Amt der Tiroler Landesregierung Waldschutz – Luftgüte

Mai 2008

Auftraggeber: Der Landeshauptmann für den Vollzug von Bundesgesetzen,

Die Landesregierung für den Vollzug von Landesgesetzen,

vertreten durch das Amt der Tiroler Landesregierung,

Abteilung Waldschutz – Luftgüte, Tel.: 0512/508/DW 4611

6020 Innsbruck, Bürgerstrasse 36

Abteilung Umweltschutz, Tel.: 0512/508/DW 3452

28. Juli 2008 Ausstellungsdatum:

Für die Abteilung Waldschutz - Luftgüte:

Dr. Weber Andreas

Weitere Informationsangebote:

⇒	Teletext des ORF	Seite 782, 783
⇒	Homepage des Landes Tirol im Internet	www.tirol.gv.at/luft

Hinweis: Die Verwendung einzelner Daten ohne Berücksichtigung aller relevanten Messergebnisse kann zu einer Verfälschung der Aussage führen. Eine auszugsweise Vervielfältigung des Luftgüteberichtes ist daher ohne schriftliche Genehmigung der Abteilung Waldschutz/Fachbereich Luftgüte nicht gestattet. Alle erhobenen Luftgütedaten sind kontrolliert und wurden entsprechend den österreichischen Qualitätsanforderungen erfasst. Zur Beurteilung der Messergebnisse wurden auch Wetterdaten der Zentralanstalt für Meteorologie und Geodynamik herangezogen.

Inhaltsverzeichnis

3
4
5
6
7
10
12
15
18
21
23
27
31
33
36
39
42
45
48
50
53
56
59
62
65
67
71
74
/4
76

Erläuterungen über die Bedeutung der verwendeten Symbole

SO2 Schwefeldioxid

PM2.5 grav. Feinstaub gemäß IG-L (High Volume Sampler und PM2.5 Kopf gesammelte

Tagesproben; durch konditionierte Wägung ermittelter Wert.)

PM10 grav. Feinstaub gemäß IG-L (High Volume Sampler und PM10 Kopf gesammelte

Tagesproben; durch konditionierte Wägung ermittelter Wert.)

PM10 kont. Feinstaub gemäß IG-L (Mittels kontinuierlich registrierender Staubmonitore und

PM10 Kopf gemessene Werte, multipliziert mit dem Defaultfaktor 1,3 oder einem

Standortfaktor, wenn dieser vorhanden ist.)

NO Stickstoffmonoxid NO2 Stickstoffdioxid

O3 Ozon

CO Kohlenmonoxid

HMW Halbstundenmittelwert

max HMW / HMW_MAX maximaler Halbstundenmittelwert max 1-MW / MW1_MAX Maximaler Einstundenmittelwert

max 01-M / MW_01_MAX Maximaler Einstundenmittelwert (stündlich gleitend)

max 3-MW Maximaler Dreistundenmittelwert
max 8-MW / MW8 MAX Maximaler Achtstundenmittelwert

max 08-M / MW_08_MAX Maximaler Achtstundenmittelwert (gleitend aus Einstundenmittelwerten)

TMW / max. TMW Tagesmittelwert / Maximaler Tagesmittelwert

MMW Monatsmittelwert

Gl.JMW Gleitender Jahresmittelwert

Keine Berechnung eines Tagesmittelwertes, da weniger

als 40 Halbstundenmittelwerte vorhanden (lt. ÖNORM 5866)

 mg/m^3 Milligramm pro Kubikmeter $\mu g/m^3$ Mikrogramm pro Kubikmeter

% Prozent = Anzahl Teile in hundert Teilen
% Promille = Anzahl Teile in tausend Teilen


VDI Verein Deutscher Ingenieure

ÖAW Österreichische Akademie der Wissenschaften

EU Europäische Union

IG-L Immissionsschutzgesetz Luft (BGBl. 115/97 i.d.g.F.)

n.a. nicht ausgewertet

	BEST	ÜCKU	NGSLIST	E			
STATIONSBEZEICHNUNG	SEEHÖHE	SO2	PM10/PM2.5 ¹⁾	NO	NO2	О3	СО
Höfen – Lärchbichl	880 m	-	-/-	-	-	•	-
Heiterwang – Ort / B179	993 m	-	•/-	•	•	-	-
Imst – Imsterau	720 m	-	•/-	•	•	-	ı
Imst – A12	716 m	-	•/-	•	•	-	-
Karwendel – West	1730 m	-	-/-	-	-	•	-
Innsbruck – Andechsstrasse	570 m	-	•/-	•	•	•	-
Innsbruck – Fallmerayerstrasse	580 m	•	●/●	•	•	-	•
Innsbruck – Sadrach	670 m	-	-/-	-	-	•	-
Nordkette	1960 m	-	-/-	•	•	•	-
Mutters – Gärberbach A13	680 m	-	•/-	•	•	-	-
Hall in Tirol – Sportplatz	560 m	-	•/-	•	•	-	ı
Vomp – Raststätte A12	550 m	-	•/-	•	•	-	ı
Vomp – An der Leiten	550 m	-	•/-	•	•	-	ı
Zillertaler Alpen	1970 m	-	-/-	-	-	•	-
Brixlegg – Innweg	520 m	•	•/-	-	-	-	-
Kramsach – Angerberg	550 m	-	-/-	•	•	•	-
Kundl – A12	510 m	-	-/-	•	•	-	-
Wörgl – Stelzhamerstrasse	510 m	-	•/-	•	•	-	1
Kufstein – Praxmarerstrasse	500 m	•	●/-	•	•	-	1
Kufstein – Festung	550 m	-	-/-	-	-	•	1
Lienz – Amlacherkreuzung	670 m	•	•/-	•	•	-	•
Lienz – Sportzentrum	670 m	-	•/-	•	•	•	-

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Kurzübersicht über die Einhaltung von Warn-, Grenz- und Zielwerten Mai 2008

Bezeichnung der Messstelle	SO2	PM10 ²⁾	NO	NO2 1)	03	CO
HÖFEN					ZP	
Lärchbichl					M	
HEITERWANG		IP				
Ort / B179						
IMST		IP		Ö		
Imsterau						
IM ST		IP		Ö		
A12						
KARWENDEL					ZP	
West					M	
INNSBRUCK		IP		Ö	P	
Andechsstrasse					M	
INNSBRUCK		IP		Ö		
Fallmerayerstrasse						
INNSBRUCK					P	
Sadrach					M	
NORDKETTE					ZP	
					M	
MUTTERS		IP		Ö		
Gärberbach A13						
HALL IN TIROL		IP		Ö		
Sportplatz						
VOMP		IP		IZ Ö		
Raststätte A12				M		
VOMP		IP		Ö		
An der Leiten						
ZILLERTALER					ZP	
ALPEN					M	
BRIXLEGG	F	IP				
Innweg						
KRAMSACH				Ö	ZP	
Angerberg					M	
KUNDL				IZ Ö		
A12				M		
WÖRGL		IP		Ö		
Stelzhamerstrasse						
KUFSTEIN		IP				
Praxmarerstrasse						
KUFSTEIN					ZP	
Festung					M	
LIENZ		IP		Ö		
Amlacherkreuzung						
LIENZ		IP			ZP	
Sportzentrum					М	
Sportzentium					141	

	Grenzwerte und Zielwerte der nachstehenden Beurteilungsgrundlagen eingehalten
M	ÖAW: Überschreitung der Immissionsgrenzkonzentration für den Menschen bei Stickstoff-, Schwefeldioxid und Ozon
P	ÖAW: Überschreitung der Immissionsgrenzkonzentration für die Vegetation bei Ozon
Ö	ÖAW: Überschreitung der Immissionsgrenzkonzentration für Ökosysteme bei Stickstoffdioxid
V	Überschreitung der Grenzwerte nach VDI-Richtlinie 2310
F	Überschreitung der Grenzwerte der 2. VO gegen forstschädliche Luftverunreinigungen
IZ	Überschreitung von Zielwerten für Stickstoffdioxid oder Schwefeldioxid (BGBl. II Nr. 298/2001) sowie Zielwert zum
IP	Überschreitung des im IG-L genannten Tages ziel wertes von 50µg/m³ für PM10. <i>Der PM10-Tages</i> grenz wert gem. Immissionsschutzgesetz Luft ist eine Perzentilregelung – pro Kalenderjahr sind derzeit bis zu 30 Überschreitungen erlaubt – Überschreitungen des Grenzwertes sind daher im Monatsbericht nicht auszuweisen.
Z	Überschreitung des langfristigen Zieles zur menschlichen Gesundheit für Ozon (gilt ab 2010)
IG	Überschreitung von Grenzwerten für Schwefeldioxid, Stickstoffdioxid oder Kohlenmonoxid gem.
!	Überschreitung von Warnwerten für Schwefeldioxid bzw. Stickstoffdioxid gemäss IG-L bzw. der Alarmschwelle gemäss Ozongesetz
1)	Der Jahresmittelwert wird in der Kurzübersicht nicht beurteilt
2)	An den Stationen Imst/Imsterau, Imst/A 12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A 12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird P M 10 gravimetrisch gemessen
	Schadstoff wird nicht gemessen

Kurzbericht für den Mai 2008

Messnetz

Das Land Tirol betreibt gemäß Immissionsschutzgesetz Luft (IG-L, BGBl. I 115/1997 i.d.g.F.) und gemäß Ozongesetz (BGBl. 210/1992 i.d.g.F.) sowie der Messkonzeptverordnung zum Immissionsschutzgesetz Luft (BGBl. II 358/98, novelliert mit BGBl. II 263/2004) ein Luftgütemessnetz mit insgesamt 22 Messstationen.

Dieser Bericht enthält Informationen über die gemessenen Luftschadstoffe Kohlenmonoxid (CO), Schwefeldioxid (SO2), Stickoxide (NO und NO2) und Ozon (O3) sowie für Feinstaub (PM 10 und PM 2,5) über die Verfügbarkeit der Messdaten, und bezieht die Ergebnisse auf anerkannte wirkungsbezogene Immissionsgrenzkonzentrationen laut ÖAW sowie auf gesetzliche Grenz- und Zielwerte österreichischer Gesetze (IG-L, Ozongesetz).

Klimaübersicht – Zentralanstalt für Meteorologie und Geodynamik, Regionalstelle für Tirol und Vorarlberg:

1,5 bis 2,5 Grad zu warm bilanzierte der Mai 2008. In der ersten Monatshälfte war es durchgehend ein wenig zu warm. Nach einem Kaltlufteinbruch vom 18. bis 22.5. endete der Mai hochsommerlich. An manchen Stationen wurden sogar neue Mairekorde aufgestellt, so wurden etwa in Kufstein am 29.5. 33,9 Grad gemessen. In höheren Tallagen gab es zu Monatsbeginn aber auch noch den einen oder anderen Frosttag. Mit 9 Sommertagen (Tage mit Höchsttemperaturen von 25 Grad oder mehr) gab es Innsbruck 4 mehr als gewöhnlich.

Im Großteil Tirols war es dabei zu trocken. Oft fielen nur 25 bis 75% des Niederschlagssolls. Nur direkt am Alpenhauptkamm und in Teilen Osttirols kamen annähernd normale Mengen zusammen. Die 7 bis 11 Niederschlagstage gab es hauptsächlich in der zweiten Monatshälfte, in Innsbruck beispielsweise fiel in der ersten Hälfte nicht einmal 1 mm Regen.

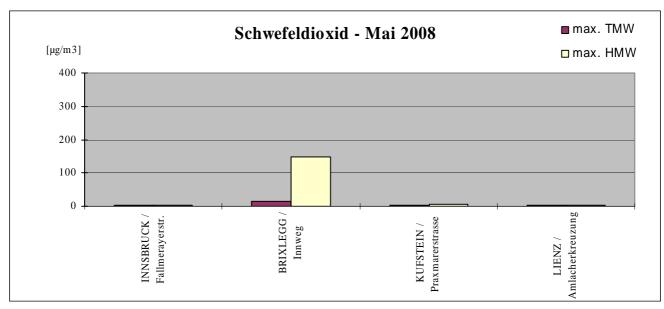
Wie schon das ganze Jahr über, zeigte auch dieses Monat der Föhn seine Muskeln. In der Landeshauptstadt wehte er gleich an 8 Tagen mit Böen über 60 km/h.

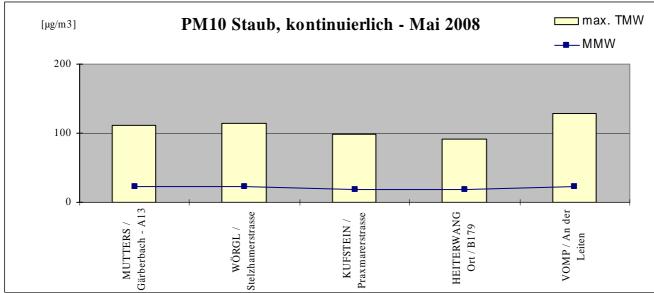
Die Sonne schien im Schnitt um ein bis zwei Stunden pro Tag mehr als zu erwarten war.

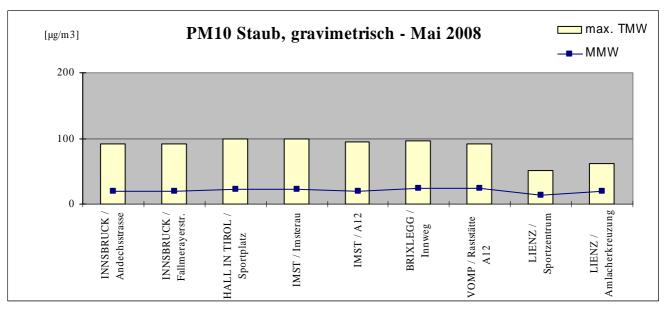
Luftschadstoffübersicht

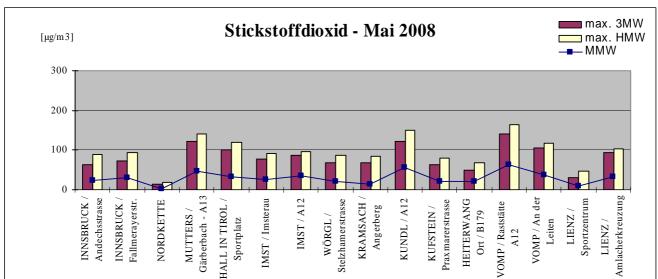
Die gemessenen Monatsmittelwerte bei der Feinstaubkomponente **PM10** lagen wie auch schon im April auf einem niedrigen Niveau und wäre nicht Ende Mai ein "Sandsturm" – Saharastaub - über Tirol hereingebrochen noch um ein paar Mikrogramm geringer. Das eindrucksvolle Wetterphänomen bescherte nördlich des Alpenhauptkammes am 28. und 29. Mai Feinstaubkonzentrationen, welche selbst für winterliche Belastungsperioden als hoch einzustufen sind. An den Stationen MUTTERS/Gärberbach und HEITERWANG Ort/B179 wurden sogar die höchsten PM10-Konzentrationen seit Bestehen dieser Messstellen verzeichnet.

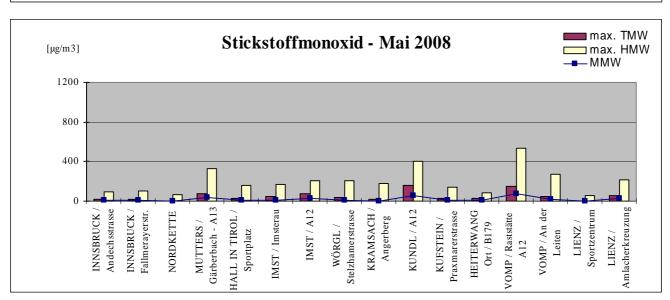
Beim **Stickstoffmonoxid** liefert die Messstelle VOMP/Raststätte A12 mit 71 μ g/m³ den höchsten Monatsmittelwert. Die höchste Belastung beim Halbstundenmittelwert mit 531 μ g/m³ ergibt sich ebenfalls an dieser Messstelle. Der höchste Tagesmittelwert wurde aber an der Messstelle KUNDL/A12 mit 161 μ g/m³ festgestellt. Die geltenden Grenzwerte laut VDI (500 μ g/m³ als Tagesmittelwert beziehungsweise 1000 μ g/m³ als Halbstundenmittelwert) wurden somit deutlich eingehalten.

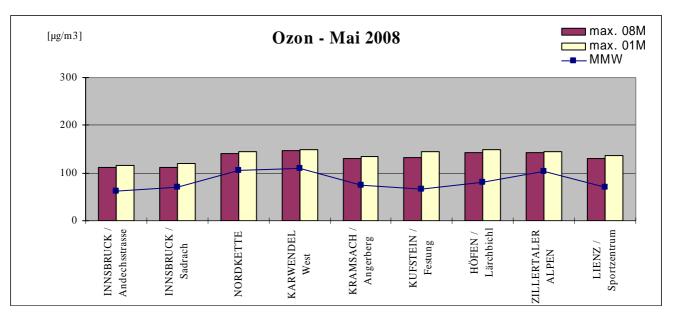

Die höchste Kurzzeitbelastung an **Stickstoffdioxid** wurde an der Station VOMP/Raststätte A12 mit einem Halbstundenmittel von 164 μ g/m³ gemessen und liegt damit unterhalb des Grenzwertes gemäß IG-Luft von 200 μ g/m³. Der im IG-Luft festgelegte Zielwert von 80 μ g/m³ als Tagesmittelwert wurde an den Messstellen VOMP/Raststätte A12 und KUNDL/A12 nicht eingehalten. Das für die beiden Messstellen NORDKETTE und KRAMSACH/Angerberg relevante Luftqualitätskriterium für NO2 zum Schutz der Vegetation laut ÖAW (Österreichische Akademie der Wissenschaften) wurde an der Messstelle KRAMSACH/Angerberg nicht eingehalten.

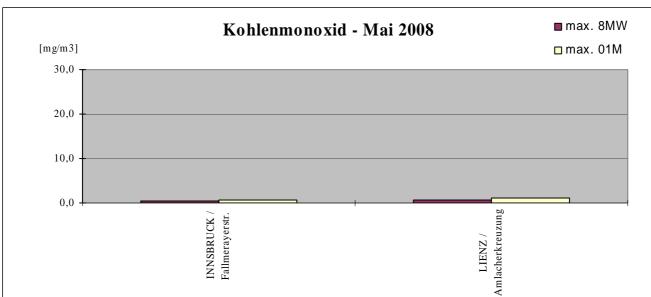

Die überwiegend trockene und sonnige erste Monatshälfte kann als erste **Ozon**periode im Jahr 2008 angesehen werden. Bei allen Messstellen mit Ausnahme der Messstellen in Innsbruck (Andechsstraße und Sadrach) wurde der Zielwert (Achtstundenmittelwert von $120~\mu g/m^3$) laut Ozongesetz mehrmals überschritten, die Informationsschwelle ($180~\mu g/m^3$ als Stundenmittelwert) wurde jedoch klar unterschritten. In der zweiten Monatshälfte gab es lediglich zwei weitere Zielwertüberschreitungen an der Messstelle ZILLERTALER ALPEN am Monatsende. Die Kriterien laut ÖAW zum Schutz des Menschen und der Vegetation wurden an allen 9 Messstellen nicht eingehalten.


Bei **Schwefeldioxid** traten einige höhere Kurzzeitspitzen an der Messstelle BRIXLEGG/Innweg auf, dabei wurde auch der geltende Grenzwert laut zweiter Verordnung gegen forstschädliche Luftverunreinigungen von $140\,\mu\text{g/m}^3$ als Halbstundenmittelwert einmal überschritten. Bei den restlichen 3 Messstellen war die Schwefeldioxidbelastung mit Halbstundenmittelwerten bis maximal $5\,\mu\text{g/m}^3$ sehr gering.


Bei **Kohlenmonoxid** wurde der Grenzwert laut IG-L von 10 mg/m³ als maximaler Achtstundenmittelwert mit 0,4 mg/m³ an der Messstelle INNSBRUCK/Fallmerayerstraße und mit 0,6 mg/m³ am Standort LIENZ/Amlacherkreuzung bei weitem nicht erreicht.


Stationsvergleich

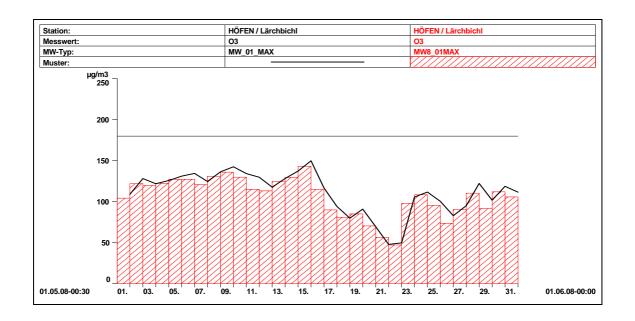




MONATSBERICHT MAI 2008 Seite 9

Messstelle: HÖFEN / Lärchbichl

	SC)2	PM10	PM10	NO		NO2				03				CO	
			kont.	grav.												
	μg	/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									115	114	109	109	110			
02.									122	122	128	128	129			
03.									120	120	122	123	123			
So 04.									122	123	126	126	126			
05.									127	128	131	131	131			
06.									127	127	134	135	135			
07.									121	122	125	125	125			
08.									131	131	136	137	137			
09.									136	136	143	143	143			
10.									130	130	134	134	135			
So 11.									115	115	130	130	133			
12.									113	114	118	118	118			
13.									125	125	128	128	129			
14.									130	131	137	137	138			
15.									143	143	150	151	151			
16.									115	115	117	117	117			
17.									90	90	94	95	96			
So 18.									81	81	80	80	81			
19.									85	85	91	92	92			
20.									70	71	70	70	70			
21.									57	58	48	49	49			
22.									47	48	50	50	51			
23.									98	98	106	106	107			
24.									108	109	112	113	113			
So 25.									95	95	100	100	101			
26.									74	74	83	83	83			
27.									90	90	95	95	96			
28.									110	111	122	122	123			
29.									92	93	102	102	102			
30.									112	112	119	119	119			
31.									106	106	112	112	113			


	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	μg/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						151	
Max.01-M						150	
Max.3-MW							
Max.08-M							
Max.8-MW						143	
Max.TMW						110	
97,5% Perz.							
MMW						81	
Gl.JMW							

Messstelle: HÖFEN / Lärchbichl

Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte						
IG-L: <u>Grenzwerte</u> menschliche Gesundheit						
IG-L: Zielwerte menschliche Gesundheit						
IG-L: Zielwerte Ökosysteme, Vegetation						
OZONOEGETZ AL I					0	
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle					0	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					11	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					29	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					20	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert						

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

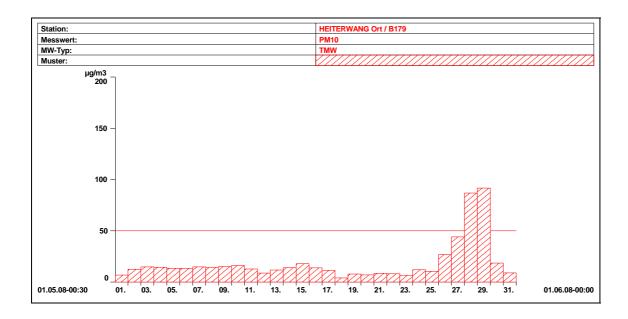
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

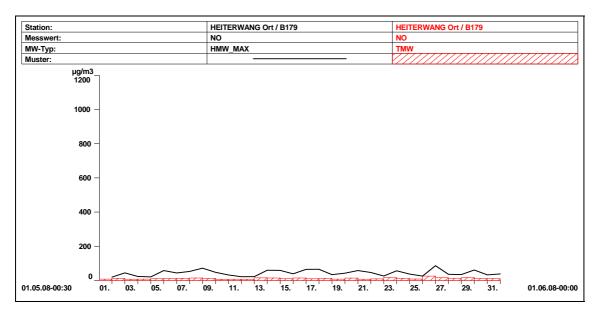
Messstelle: HEITERWANG Ort / B179

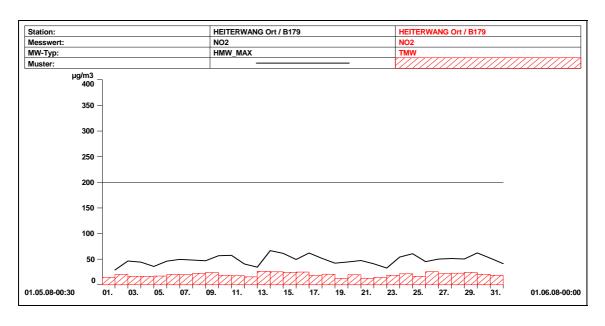
	SO)2	PM10	PM10	NO		NO2			03			co			
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			7		19	14	24	29								
02.			12		44	20	41	46								
03.			15		23	16	35	44								
So 04.			14		21	17	35	36								
05.			13		58	17	44	46								
06.			13		44	20	46	50								
07.			15		53	20	46	48								
08.			14		72	22	43	47								
09.			15		48	24	50	57								
10.			16		32	18	55	57								
So 11.			13		22	18	38	41								
12.			9		22	15	31	34								
13.			12		60	26	54	67								
14.			14		59	25	56	61								
15.			18		39	24	46	49								
16.			14		65	25	49	62								
17.			11		65	18	49	52								
So 18.			4		34	21	40	42								
19.			8		42	13	40	45								
20.			7		58	20	42	47								
21.			9		47	12	35	41								
22.			8		26	14	31	33								
23.			7		56	19	51	54								
24.			12		37	21	55	61								
So 25.			10		26	16	34	45								
26.			27		87	26	47	50								
27.			44		36	22	47	51								
28.			87		34	23	46	50								
29.			92		61	24	57	62								
30.			19		32	20	45	52								
31.			9		38	19	34	41								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	со
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m³	$\mu g/m^3$	μg/m³	mg/m³
Anz. Messtage		31		31	31		
Verfügbarkeit		100%		98%	98%		
Max.HMW				87	67		
Max.01-M					57		
Max.3-MW					50		
Max.08-M							
Max.8-MW							
Max.TMW		92		25	26		
97,5% Perz.							
MMW		18		11	20		
Gl.JMW					28		

Messstelle: HEITERWANG Ort / B179


Anzahl der Tage mit Grenzwertüberschreitungen


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		2		0		
IG-L: Zielwerte menschliche Gesundheit		2		0		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				Ü1		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Zeitraum: MAI 2008 Messstelle: IMST / Imsterau

	SO)2	PM10 kont.	PM10 grav.	NO	_	NO2		03				_	со		
	μg	/m³	μg/m³	μg/m ³	$\mu g/m^3$		$\mu g/m^3$		-		$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				5	7	11	20	27								
02.				11	58	30	64	74								
03.				13	12	16	28	30								
So 04.				13	4	9	16	18								
05.				18	66	27	66	69								
06.				18	62	26	54	58								
07.				25	65	24	52	56								
08.				22	52	30	58	79								
09.				22	57	31	59	60								
10.				20	46	21	50	56								
So 11.				15	16	12	32	39								
12.				9	15	17	56	57								
13.				18	53	28	67	70								
14.				25	59	33	60	65								
15.				26	52	41	82	82								
16.				21	51	36	65	71								
17.				16	42	29	46	55								
So 18.				19	19	19	34	36								
19.				11	87	20	42	62								
20.				8	81	26	49	51								
21.				9	45	24	37	44								
22.				10	15	14	19	22								
23.				11	26	18	33	35								
24.				13	30	20	46	52								
So 25.				12	15	21	41	45								
26.				36	165	47	72	72								
27.				40	76	34	62	74								
28.				99	156	48	89	91								
29.				78	73	32	67	69								
30.				23	54	40	57	60								
31.				12	38	21	39	50								

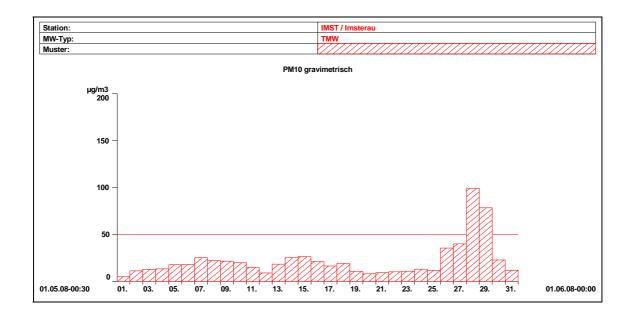
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage			31	31	31		
Verfügbarkeit			100%	98%	98%		
Max.HMW				165	91		
Max.01-M					89		
Max.3-MW					77		
Max.08-M							
Max.8-MW							
Max.TMW			99	49	48		
97,5% Perz.							
MMW			22	13	26		
Gl.JMW					37		

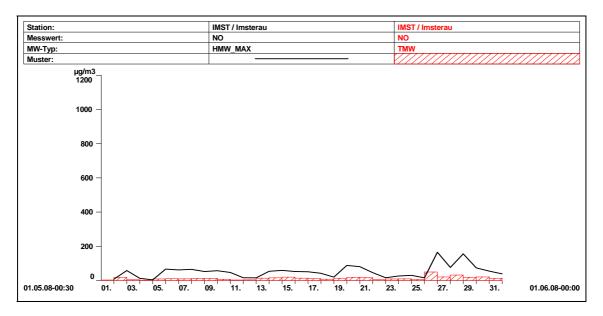
0

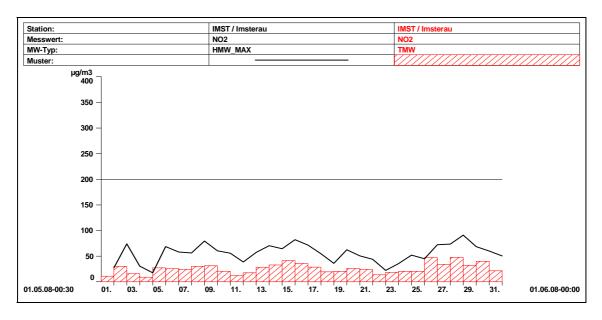
Zeitraum: MAI 2008

Messstelle: IMST / Imsterau

Anzahl der Tage mit Grenzwertüberschreitungen


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		2		0		
IG-L: Zielwerte menschliche Gesundheit		2		0		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				3		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						


VDI-RL 2310: NO-Grenzwert


 $[\]ddot{U}1) \ \ddot{U}berschreitung \ des \ NO2-Grenzwertes \ gem\"{a}B \ \ddot{O}AW \ nur \ f\"{u}r \ den \ JMW \ (gleitend)$ $\ddot{U}2) \ \ddot{U}berschreitung \ des \ 97,5 \ Perzentils \ gem\"{a}B \ 2. \ VO \ gegen \ forstsch\"{a}dliche \ Luftverunreinigungen$

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

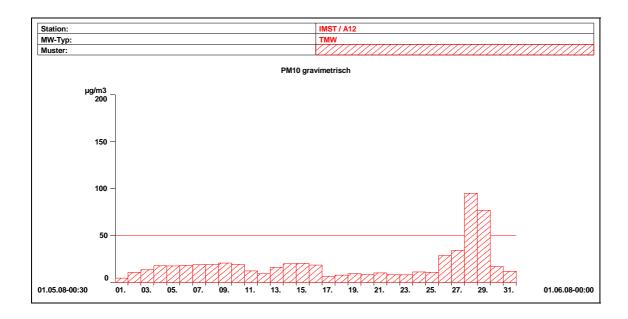
¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Zeitraum: MAI 2008 Messstelle: IMST / A12

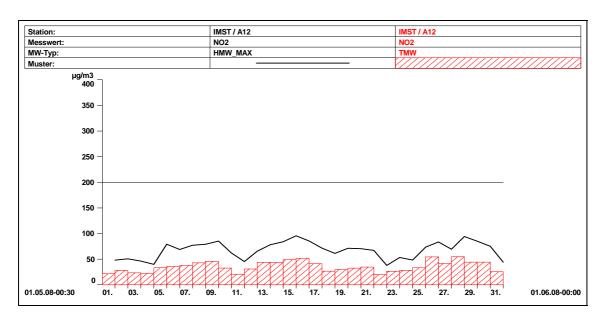
	SC)2	PM10	PM10	NO		NO2				03				co	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				5	27	22	44	48								
02.				11	68	28	43	51								
03.				13	34	23	43	46								
So 04.				18	20	22	35	40								
05.				18	107	33	76	79								
06.				18	78	35	64	69								
07.				19	114	37	72	77								
08.				19	102	43	78	79								
09.				21	94	46	76	85								
10.				19	53	33	62	62								
So 11.				12	20	21	34	45								
12.				9	42	31	60	66								
13.				16	103	44	76	78								
14.				20	88	44	82	84								
15.				20	140	49	90	96								
16.				19	91	52	82	85								
17.				7	80	41	69	71								
So 18.				8	47	27	56	61								
19.				9	119	29	66	71								
20.				8	88	33	65	70								
21.				10	118	35	65	67								
22.				8	35	20	34	38								
23.				8	82	26	43	53								
24.				11	48	28	46	48								
So 25.				11	56	33	63	73								
26.				29	207	54	80	84								
27.				34	155	41	67	69								
28.				95	178	55	93	94								
29.				77	147	44	83	85								
30.				17	65	44	70	75								
31.				12	66	26	40	44								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	О3	СО
	$\mu g/m^3$	$\mu g/m^3$	μg/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage			31	31	31		
Verfügbarkeit			100%	98%	98%		
Max.HMW				207	96		
Max.01-M					93		
Max.3-MW					87		
Max.08-M							
Max.8-MW							
Max.TMW			95	77	55		
97,5% Perz.							
MMW			19	24	35		
Gl.JMW					53		

Zeitraum: MAI 2008 Messstelle: IMST / A12


Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		2		0		
IG-L: Zielwerte menschliche Gesundheit		2		0		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				12		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			-


 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

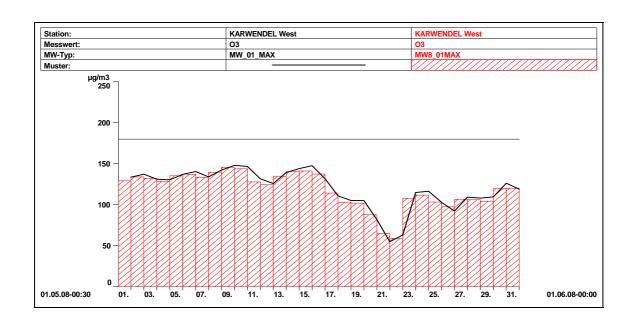
¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: KARWENDEL West

	SO)2	PM10	PM10	NO		NO2	_			03			_	СО	_
	μg	/3	kont.	grav.												_
	μg		μg/m³	μg/m³	μg/m³		μg/m³			l	μg/m³	l	l		mg/m³	
Tag	TMW	max HMW	TMW	TMW	max HMW	TMW	max 01-M	max HMW	max 08-M	max 8-MW	max 01-M	max 1-MW	max HMW	max 8-MW	max 01-M	max HMW
01.									130	130	134	134	134			
02.									134	134	137	137	137			
03.									132	132	131	131	131			
So 04.									129	129	130	131	131			
05.									135	135	137	137	137			
06.									137	137	140	140	141			
07.									133	134	134	134	135			
08.									140	139	142	143	144			
09.									146	146	148	148	148			
10.									144	144	147	147	147			
So 11.									128	128	132	132	132			
12.									124	124	126	126	126			
13.									135	135	139	139	139			
14.									140	140	144	144	145			
15.									141	141	148	148	149			
16.									137	138	132	133	135			
17.									114	114	111	111	111			
So 18.									103	103	105	105	106			
19.									102	102	105	105	106			
20.									88	88	82	82	83			
21.									65	66	55	56	55			
22.									59	59	63	65	65			
23.									108	108	115	115	117			
24.									112	112	116	117	117			
So 25.									103	103	103	103	104			
26.									97	98	92	92	93			
27.									107	107	109	110	110			
28.									106	106	108	108	108			
29.									104	104	110	110	110			
30.									119	120	126	126	128			
31.									120	120	119	121	121			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						149	
Max.01-M						148	
Max.3-MW							
Max.08-M							
Max.8-MW						146	
Max.TMW						139	
97,5% Perz.							
MMW						110	
Gl.JMW							

Messstelle: KARWENDEL West


Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte						
IG-L: Grenzwerte menschliche Gesundheit						
IG-L: Zielwerte menschliche Gesundheit						
IG-L: Zielwerte Ökosysteme, Vegetation						
OZONGESETZ: Alarmschwelle					0	
OZONGESETZ: Informationsschwelle					0	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					16	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte						

Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)										
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					30						
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					27						
ÖAW: SO2-Kriterium für Siedlungsgebiete											
VDI-RL 2310: NO-Grenzwert											

Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: INNSBRUCK / Andechsstrasse

	SO	02	PM10	PM10	NO	_	NO2				03				со	
			kont.	grav.		_			_							
	μg	/m³	μg/m³	μg/m³	μg/m³		μg/m³	1		1	μg/m³	1			mg/m³	ı
_		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				6	10	19	42	48	98	98	99	100	100			
02.				13	46	28	58	64	95	95	106	106	107			
03.				16	23	25	51	58	95	95	102	103	104			
So 04.	_			15	10	17	34	36	97	97	103	103	104			
05.				15	13	22	39	43	99	99	104	104	105			
06.				18	60	29	61	69	96	96	103	105	106			
07.				21	90	33	69	72	100	100	109	110	112			
08.				19	53	33	65	66	102	102	111	111	112			
09.				21	66	36	66	70	105	105	114	114	115			
10.				18	27	29	61	62	104	104	112	113	114			
So 11.				13	9	18	37	38	94	94	100	100	102			
12.				10	5	18	59	71	94	94	98	98	99			
13.				14	35	32	83	89	98	98	105	105	108			
14.				19	39	34	69	74	105	105	111	112	112			
15.				21	42	28	62	66	111	111	116	116	116			
16.				16	12	23	42	53	111	111	102	102	102			
17.				7	17	15	36	37	88	88	87	89	88			
So 18.				8	10	16	31	33	68	71	70	70	71			
19.				10	47	24	50	55	74	75	85	85	85			
20.				9	13	26	40	43	58	58	49	49	50			
21.				9	50	27	45	50	31	32	37	38	38			
22.				13	27	20	42	46	40	40	49	49	49			
23.				10	68	24	42	49	86	86	95	96	97			
24.				12	22	17	31	33	95	95	96	97	97			
So 25.				10	9	12	20	24	91	91	85	85	86			
26.				24	51	39	71	73	74	74	74	74	74			
27.				28	57	23	54	63	81	81	90	90	91			
28.				91	8	16	46	52	90	90	92	94	94			
29.				70	62	27	63	66	83	82	93	93	94			
30.				19	33	29	59	69	89	89	93	95	96			
31.				14	24	20	34	40	93	93	99	99	99			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	со
	$\mu g/m^3$	$\mu g/m^3$	μg/m³	μg/m³	μg/m³	$\mu g/m^3$	mg/m³
Anz. Messtage			31	31	31	31	
Verfügbarkeit			100%	98%	98%	98%	
Max.HMW				90	89	116	
Max.01-M					83	116	
Max.3-MW					63		
Max.08-M							
Max.8-MW						111	
Max.TMW			91	17	39	84	
97,5% Perz.							
MMW			19	7	24	62	
Gl.JMW					40		

0

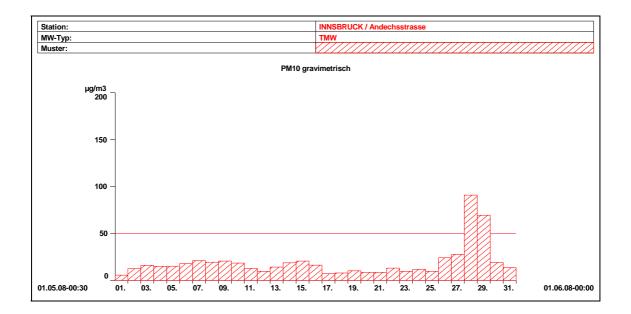
Zeitraum: MAI 2008

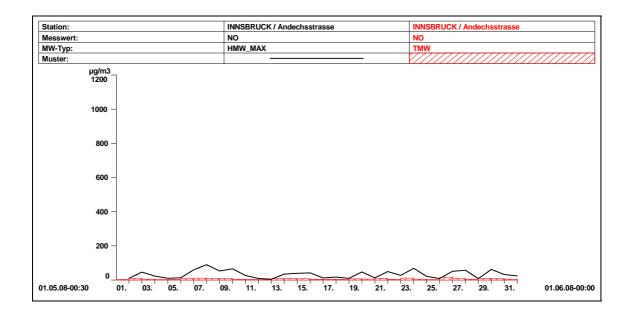
Messstelle: INNSBRUCK / Andechsstrasse

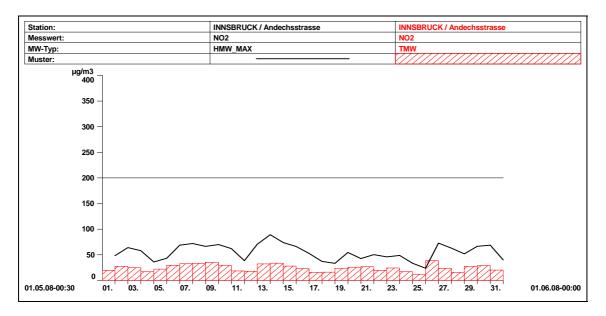
Anzahl der Tage mit Grenzwertüberschreitungen

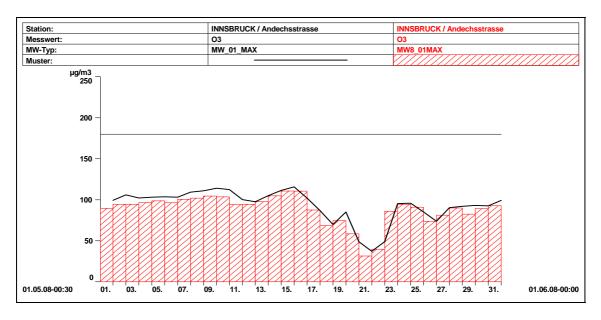
Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		2		0		
IG-L: Zielwerte menschliche Gesundheit		2		0		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle					0	
OZONGESETZ: Informationsschwelle					0	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					0	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	e)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				1	28	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1	6	

 $[\]ddot{\text{U}}\text{1})$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)


ÖAW: SO2-Kriterium für Siedlungsgebiete


VDI-RL 2310: NO-Grenzwert


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen


n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: INNSBRUCK / Fallmerayerstrasse

	SC)2	PM10	PM25	NO	_	NO2			_	03	_			CO	
			grav.	grav.					_							
	μg		μg/m³	μg/m³	μg/m³		μg/m³			I	μg/m³	1			mg/m³	
Tag	TMW	max HMW	TMW	TMW	max HMW	TMW	max 01-M	max HMW	max 08-M	max 8-MW	max 01-M	max 1-MW	max HMW	max 8-MW	max 01-M	max HMW
									00-101	0-1VI VV	01-W	1-1V1 VV	TIMIW			
01.	1 2	2 4	6	4	13	23 37	44 83	46 89						0.2	0.2 0.4	0.2
02. 03.	2	4	12 17	8 10	55 20	29	56	61						0.3 0.2	0.4	0.5 0.3
So 04.	1	3	16	10	22	21	35	40						0.2	0.3	0.3
05.	1	3	16	10	31	30	54	57						0.2	0.2	0.3
06.	1	3	17	11	59	33	72	75						0.2	0.3	0.4
07.	1	4	19	13	85	38	76	81						0.3	0.4	0.5
08.	1	3	18	11	46	40	69	73						0.3	0.4	0.5
09.	1	2	19	12	61	45	70	78						0.3	0.4	0.4
10.	1	2	20	13	23	35	54	56						0.2	0.3	0.4
So 11.	1	2	13	10	7	16	35	37						0.2	0.2	0.2
12.	1	2	9	7	11	16	39	41						0.2	0.2	0.3
13.	1	2	15	11	44	42	92	93						0.3	0.4	0.5
14.	1	2	19	15	54	43	70	74						0.3	0.3	0.3
15.	1	2	21	20	40	39	69	73						0.3	0.3	0.4
16.	1	2	17	14	39	35	72	77						0.3	0.5	0.7
17.	1	1	9	7	15	19	37	40						0.1	0.2	0.3
So 18.	1	2	11	6	15	17	33	42						0.1	0.2	0.2
19.	1	2	12	8	76	31	66	74						0.2	0.4	0.4
20.	1	2	11	9	58	34	53	59						0.2	0.3	0.4
21.	1	2	14	9	67	34	48	55						0.4	0.5	0.6
22.	1	1	14	10	16	21	38	40						0.2	0.3	0.3
23.	1	3	12	7	102	32	57	60						0.3	0.7	1.0
24.	1	2	12	10	26	20	34	40						0.2	0.2	0.3
So 25.	1	1	10	8	11	12	16	21						0.1	0.3	0.4
26.	1	2	23	12	71	43	70	83						0.3	0.4	0.5
27.	1	2	29	13	52	39	85	90						0.3	0.4	0.7
28.	2	3	91	31	35	30	56	64						0.2	0.3	0.4
29.	2	4	69	35	73	39	80	88						0.3	0.4	0.5
30.	1	2	18	14	52	34	74	92						0.3	0.4	0.4
31.	1	1	13	10	18	22	47	51						0.2	0.3	0.3

	SO2	PM10 grav.	PM25 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage	31	31	31	31	31		
Verfügbarkeit	98%	100%	100%	98%	98%		99%
Max.HMW	4			102	93		
Max.01-M					92		0.7
Max.3-MW	3				73		
Max.08-M							
Max.8-MW							0.4
Max.TMW	2	91	35	21	45		
97,5% Perz.	3						
MMW	1	19	12	11	31		0.2
Gl.JMW					46		

Messstelle: INNSBRUCK / Fallmerayerstrasse

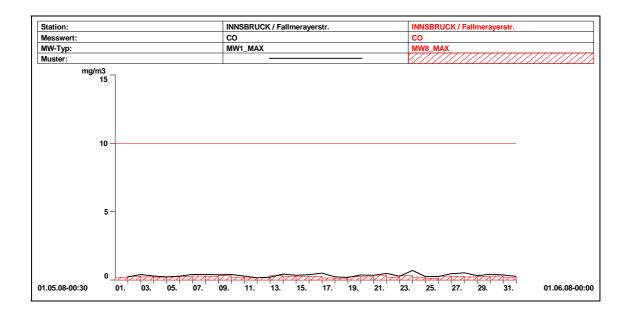
Anzahl der Tage mit Grenzwertüberschreitungen

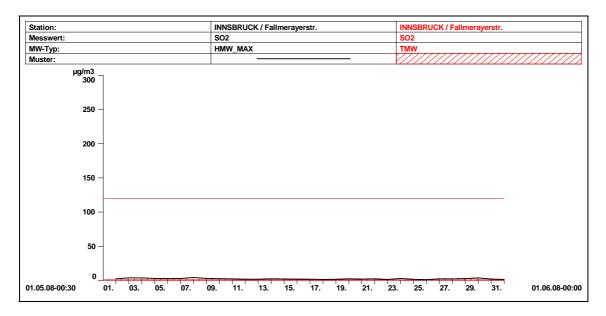
Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte	0			0		
IG-L: Grenzwerte menschliche Gesundheit	0	2		0		0
IG-L: Zielwerte menschliche Gesundheit		2		0		
IG-L: Zielwerte Ökosysteme, Vegetation	0			n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen	0/0					
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				9		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		

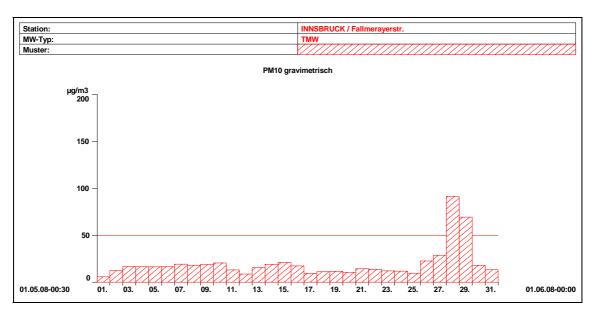
 $[\]ddot{\text{U}}\text{1})$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

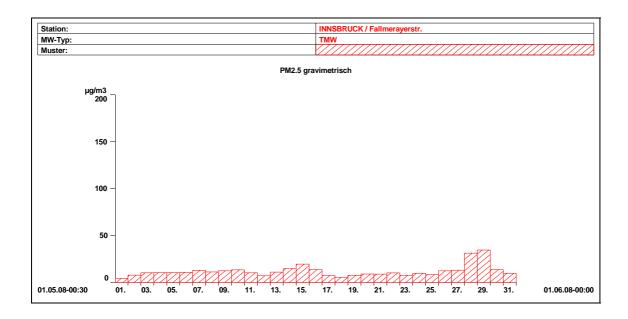
ÖAW: SO2-Kriterium für Siedlungsgebiete

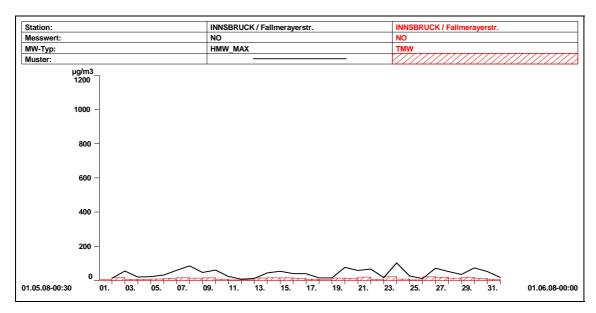
VDI-RL 2310: NO-Grenzwert

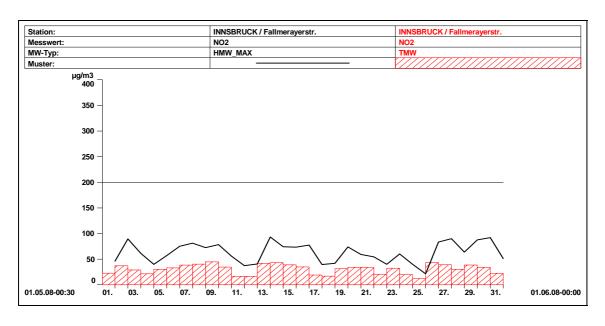

0


0


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen


n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.


¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

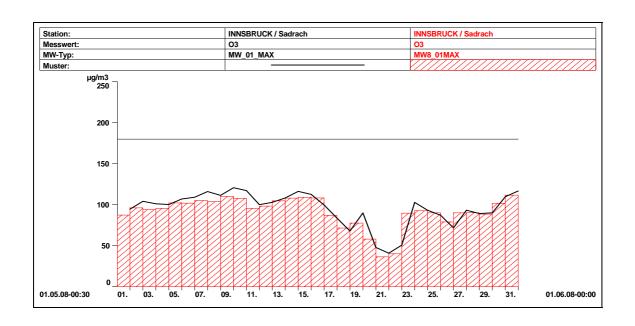


Messstelle: INNSBRUCK / Sadrach

	SC)2	PM10	PM10	NO		NO2	_			03			_	СО	_
	μg	/m3	kont. μg/m³	grav.	μg/m³	_	μg/m³		_		11 g/m³				mg/m³	
	μg/	max	μg/III	μg/m³			max	max	max	max	μg/m³ max	mov	en o v	max	max	max
Tag	TMW	max HMW	TMW	TMW	max HMW	TMW	max 01-M	max HMW	max 08-M	8-MW	max 01-M	max 1-MW	max HMW	8-MW	max 01-M	max HMW
01.									95	95	95	95	95			
02.									96	96	104	104	105			
03.									94	94	101	101	101			
So 04.									96	96	100	100	101			
05.									102	102	107	107	107			
06.									102	102	109	110	110			
07.									105	105	116	116	116			
08.									104	105	111	114	115			
09.									110	110	121	121	122			
10.									108	108	117	117	118			
So 11.									95	96	100	100	100			
12.									98	98	103	103	103			
13.									105	105	108	109	110			
14.									108	108	116	116	117			
15.									109	109	113	113	113			
16.									108	109	100	100	100			
17.									87	87	84	86	85			
So 18.									72	74	68	68	69			
19.									78	78	90	90	92			
20.									58	58	48	48	49			
21.									36	36	41	41	42			
22.									40	40	51	51	52			
23.									90	90	103	104	104			
24.									93	93	93	93	94			
So 25.									90	91	87	88	89			
26.									79	79	72	74	75			
27.									90	90	93	94	94			
28.									90	90	89	89	90			
29.									89	88	90	90	91			
30.									102	102	110	110	112			
31.									112	112	117	117	119			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						122	
Max.01-M						121	
Max.3-MW							
Max.08-M							
Max.8-MW						112	
Max.TMW						91	
97,5% Perz.							
MMW						71	
Gl.JMW							

Messstelle: INNSBRUCK / Sadrach


Anzahl der Tage mit Grenzwertüberschreitungen

PM10 1)	NO	NO2	O3	CO
			0	
			0	
			0	
				0

Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	e)			
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				28	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				12	
ÖAW: SO2-Kriterium für Siedlungsgebiete					
VDI-RL 2310: NO-Grenzwert					

Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Zeitraum: MAI 2008 Messstelle: NORDKETTE

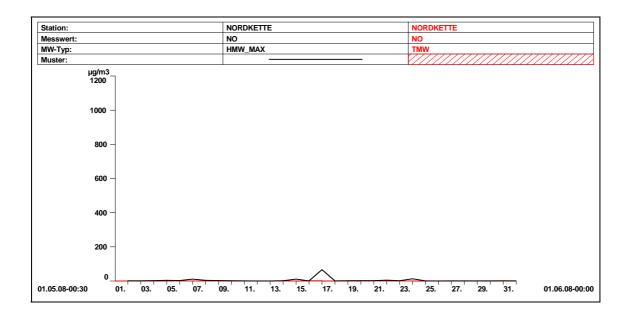
	SC	02	PM10	PM10	NO	_	NO2				03			_	СО	
			kont.	grav.												
	μg	/m³	μg/m³	$\mu g/m^3$	μg/m³		μg/m³				μg/m³				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.					2	0	2	2	129	129	134	136	136			
02.					2	1	3	4	130	130	135	135	135			
03.					2	2	6	7	129	129	126	126	127			
So 04.					5	3	8	8	125	125	131	132	132			
05.					3	3	6	8	127	127	129	130	130			
06.					11	3	13	16	132	132	136	136	136			
07.					4	4	11	13	132	132	138	138	139			
08.					3	4	9	10	137	137	140	140	141			
09.					2	4	7	8	135	135	139	139	139			
10.					1	4	8	8	140	141	143	143	143			
So 11.					1	1	2	3	122	123	126	126	126			
12.					1	1	4	5	115	115	117	117	117			
13.					2	2	5	5	129	129	134	135	136			
14.					12	4	8	10	138	138	145	145	146			
15.					1	5	7	7	137	138	141	141	141			
16.					67	8	14	19	138	138	133	135	134			
17.					1	2	4	5	105	106	100	103	102			
So 18.					2	1	2	3	92	92	94	94	95			
19.					2	2	6	7	93	93	95	97	97			
20.					2	6	14	14	89	89	84	88	88			
21.					5	7	12	13	48	48	51	51	51			
22.					2	3	6	9	75	75	86	86	89			
23.					13	3	12	19	110	110	111	112	118			
24.					1	3	3	3	110	110	112	112	113			
So 25.					1	1	1	2	105	105	100	100	100			
26.					1	1	3	3	92	93	89	89	89			
27.					1	1	2	3	103	103	106	107	107			
28.					1	2	4	4	103	103	105	105	105			
29.					1	1	2	2	101	102	105	105	106			
30.					2	1	4	7	116	117	125	125	125			
31.					1	1	4	5	120	120	124	125	125			

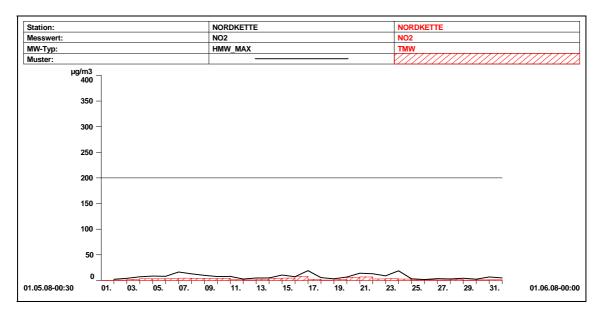
	SO2	PM10 kont.	PM10 grav.	NO	NO2	О3	СО
	$\mu g/m^3$	$\mu g/m^3$	μg/m³	μg/m³	$\mu g/m^3$	μg/m³	mg/m³
Anz. Messtage				31	31	31	
Verfügbarkeit				98%	98%	98%	
Max.HMW				67	19	146	
Max.01-M					14	145	
Max.3-MW					13		
Max.08-M							
Max.8-MW						141	
Max.TMW				3	8	135	
97,5% Perz.							
MMW				1	3	106	
Gl.JMW					4		

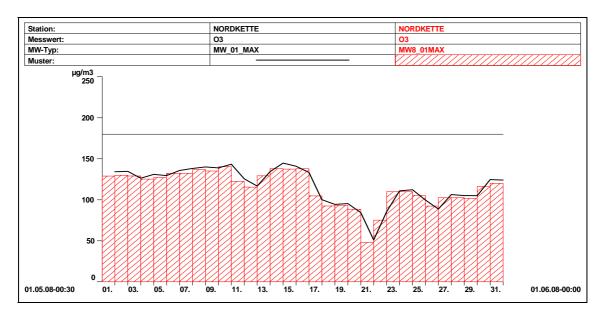
0

Zeitraum: MAI 2008 Messstelle: NORDKETTE

Anzahl der Tage mit Grenzwertüberschreitungen


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit				0		
IG-L: Zielwerte menschliche Gesundheit				0		
IG-L: Zielwerte Ökosysteme, Vegetation				0		
OZONGESETZ: Alarmschwelle					0	
OZONGESETZ: Informationsschwelle					0	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					15	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	cichtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				0	30	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0	25	
ÖAW: SO2-Kriterium für Siedlungsgebiete						


VDI-RL 2310: NO-Grenzwert


 $[\]ddot{U}1) \ \ddot{U}berschreitung \ des \ NO2-Grenzwertes \ gem\"{a}B \ \ddot{O}AW \ nur \ f\"{u}r \ den \ JMW \ (gleitend)$ $\ddot{U}2) \ \ddot{U}berschreitung \ des \ 97,5 \ Perzentils \ gem\"{a}B \ 2. \ VO \ gegen \ forstsch\"{a}dliche \ Luftverunreinigungen$

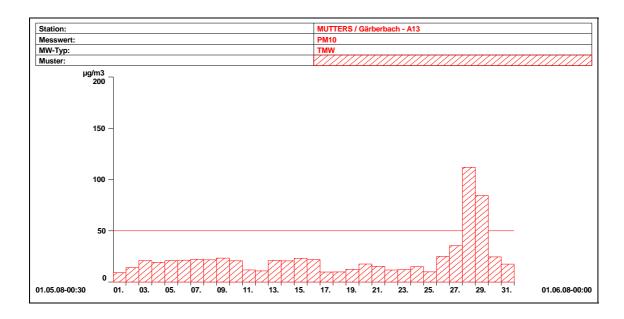
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

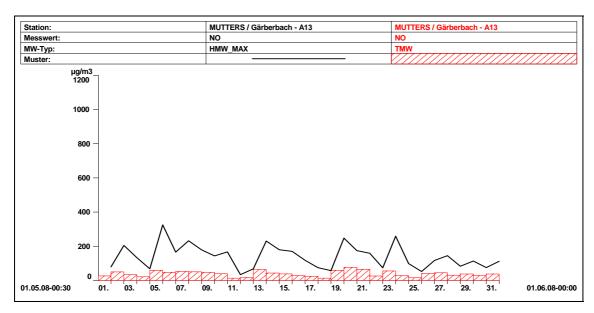
¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

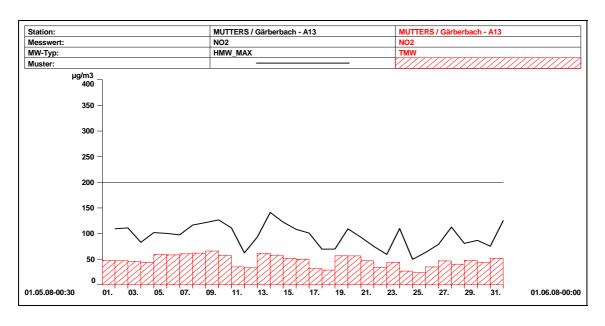
Messstelle: MUTTERS / Gärberbach - A13

	SO)2	PM10	PM10	NO		NO2			_	03				co	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	μg/m³		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			9		79	47	106	109								
02.			14		205	47	98	111								
03.			21		133	46	79	83								
So 04.			19		68	44	92	102								
05.			21		325	59	95	100								
06.			21		166	58	96	97								
07.			22		232	60	108	116								
08.			22		179	62	105	121								
09.			23		144	66	121	127								
10.			21		167	57	106	111								
So 11.			12		34	35	51	62								
12.			11		67	33	66	93								
13.			21		231	61	130	141								
14.			21		179	58	114	122								
15.			23		170	51	107	108								
16.			22		118	49	97	101								
17.			10		74	31	66	70								
So 18.			10		58	29	62	70								
19.			12		247	57	103	109								
20.			18		174	56	91	93								
21.			15		159	47	72	75								
22.			12		73	34	55	59								
23.			12		258	44	101	110								
24.			15		99	27	46	50								
So 25.			10		52	24	61	63								
26.			25		117	35	62	79								
27.			35		145	47	112	113								
28.			112		83	40	77	81								
29.			84		113	48	85	87								
30.			25		75	43	64	75								
31.			18		112	52	111	125								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage		31		31	31		
Verfügbarkeit		100%		98%	98%		
Max.HMW				325	141		
Max.01-M					130		
Max.3-MW					121		
Max.08-M							
Max.8-MW							
Max.TMW		112		77	66		
97,5% Perz.							
MMW		23		39	47		
Gl.JMW					51		


Messstelle: MUTTERS / Gärberbach - A13


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: <u>Grenzwerte</u> menschliche Gesundheit		2		0		
IG-L: Zielwerte menschliche Gesundheit		2		0		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	e)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				24		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

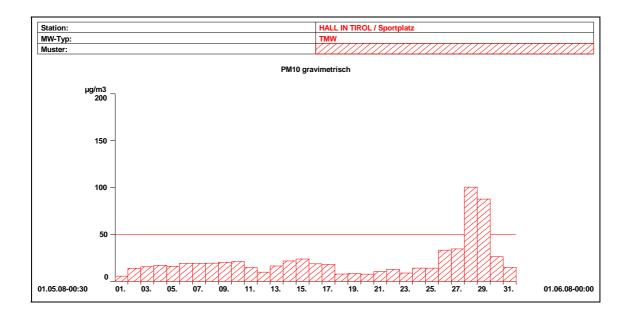
Messstelle: HALL IN TIROL / Sportplatz

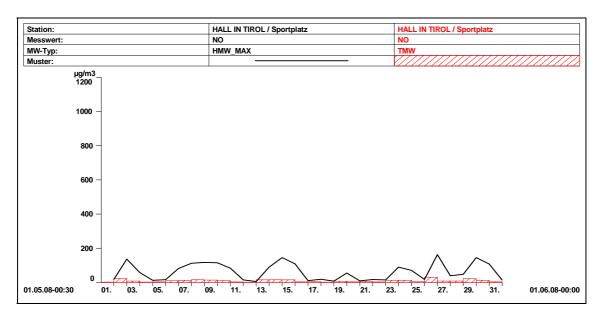
	SC	02	PM10	PM10	NO		NO2				03				СО	_
			kont.	grav.												
	μg	/m³	μg/m³	μg/m³	$\mu g/m^3$		μg/m³	ı		l	$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				6	18	18	42	47								
02.				14	137	39	92	96								
03.				16	58	30	69	74								
So 04.				17	12	19	42	44								
05.				16	16	23	57	65								
06.				19	82	31	65	73								
07.				19	112	33	67	71								
08.				19	117	40	74	76								
09.				20	115	39	93	94								
10.				21	83	34	75	78								
So 11.				15	15	31	70	71								
12.				10	5	26	66	77								
13.				16	89	47	109	118								
14.				22	146	50	111	120								
15.				24	109	40	81	89								
16.				19	10	35	76	84								
17.				18	18	35	76	84								
So 18.				8	8	21	37	43								
19.				8	55	25	54	56								
20.				8	9	23	41	41								
21.				10	17	23	36	39								
22.				13	15	19	49	51								
23.				9	90	26	76	81								
24.				14	70	23	40	41								
So 25.				14	18	31	61	66								
26.				33	163	53	90	95								
27.				35	39	24	63	64								
28.				100	48	27	104	105								
29.				88	145	49	74	79								
30.				26	108	46	98	103								
31.				15	14	27	90	91								

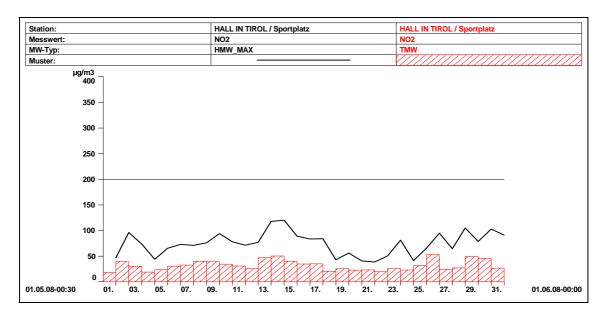
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage			31	31	31		
Verfügbarkeit			100%	98%	98%		
Max.HMW				163	120		
Max.01-M					111		
Max.3-MW					100		
Max.08-M							
Max.8-MW							
Max.TMW			100	30	53		
97,5% Perz.							
MMW			22	9	32		
Gl.JMW					43		

Messstelle: HALL IN TIROL / Sportplatz

Anzahl der Tage mit Grenzwertüberschreitungen


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		2		0		
IG-L: Zielwerte menschliche Gesundheit		2		0		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				13		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			

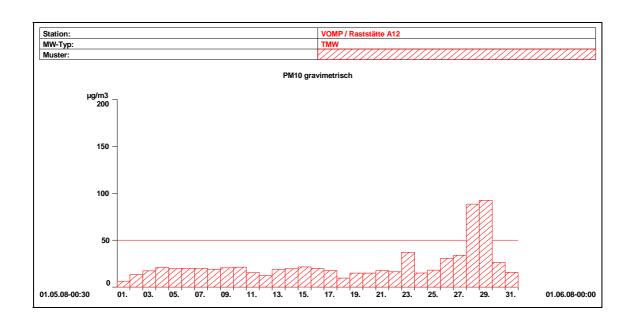

VDI-RL 2310: NO-Grenzwert


 $[\]ddot{U}1) \ \ddot{U}berschreitung \ des \ NO2-Grenzwertes \ gem\"{a}B \ \ddot{O}AW \ nur \ f\"{u}r \ den \ JMW \ (gleitend)$ $\ddot{U}2) \ \ddot{U}berschreitung \ des \ 97,5 \ Perzentils \ gem\"{a}B \ 2. \ VO \ gegen \ forstsch\"{a}dliche \ Luftverunreinigungen$

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

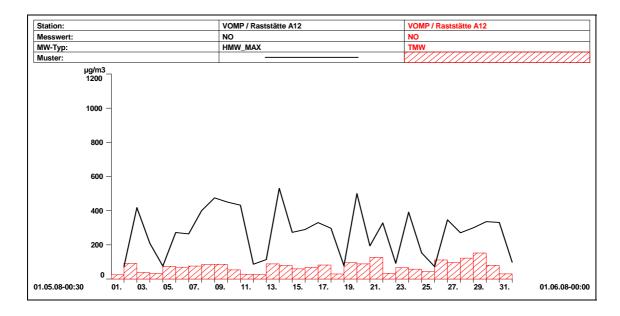
¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

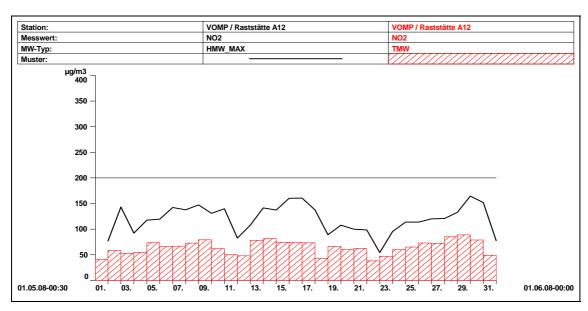
Messstelle: VOMP / Raststätte A12


	SC)2	PM10	PM10	NO		NO2			_	03				СО	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	μg/m³		μg/m³				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				6	74	41	65	77								
02.				13	418	58	135	143								
03.				17	209	52	76	92								
So 04.				21	76	55	109	118								
05.				20	272	74	116	120								
06.				20	264	66	127	142								
07.				20	400	67	124	138								
08.				19	475	73	144	147								
09.				21	450	79	127	131								
10.				21	432	62	103	140								
So 11.				15	87	50	77	83								
12.				12	114	48	103	108								
13.				19	531	78	136	141								
14.				20	273	82	133	137								
15.				21	290	74	158	160								
16.				20	330	74	129	161								
17.				18	297	73	119	138								
So 18.				10	78	43	84	89								
19.				15	500	66	102	108								
20.				15	194	60	95	100								
21.				18	328	62	92	98								
22.				16	92	38	53	54								
23.				37	391	47	84	96								
24.				15	153	60	108	114								
So 25.				18	73	65	108	114								
26.				31	347	73	110	120								
27.				34	271	72	120	121								
28.				88	300	85	119	133								
29.				92	336	89	153	164								
30.				26	332	79	137	152								
31.				16	99	49	73	78								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage			31	31	31		
Verfügbarkeit			100%	97%	97%		
Max.HMW				531	164		
Max.01-M					158		
Max.3-MW					140		
Max.08-M							
Max.8-MW							
Max.TMW			92	152	89		
97,5% Perz.							
MMW			24	71	64		
Gl.JMW					67		

Messstelle: VOMP / Raststätte A12


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		2		0		
IG-L: Zielwerte menschliche Gesundheit		2		3		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				30		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				3		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: VOMP / An der Leiten

	SC	02	PM10	PM10	NO	_	NO2		_	-	03		_		co	
		/ 2	kont.	grav.	/ 2		/ 2				/ 2				/ 2	
	μg		μg/m³	μg/m³	μg/m³		μg/m³	1			μg/m³	1	l		mg/m³	
Tag	TMW	max HMW	TMW	TMW	max HMW	TMW	max 01-M	max HMW	max 08-M	max 8-MW	max 01-M	max 1-MW	max HMW	max 8-MW	max 01-M	max HMW
01.	11/1//	111/1//	5	11/1//	33	23	51	55	00 141	0 141 44	01 101	1 141 44	111/1//	0 141 44	01 141	TIMIW
02.			12		232	36	88	89								
03.			17		81	28	55	59								
So 04.			18		49	23	52	81								
05.			16		68	36	97	102								
06.			18		104	34	77	106								
07.			21		139	36	71	79								
08.			20		272	40	89	90								
09.			20		275	45	98	102								
10.			19		189	37	85	86								
So 11.			15		86	34	73	74								
12.			11		49	29	94	105								
13.			17		152	48	98	107								
14.			21		162	53	96	104								
15.			23		44	44	117	117								
16.			16		38	39	84	91								
17.			16		82	48	84	84								
So 18.			6		11	19	39	48								
19.			9		82	31	52	54								
20.			9		62	36	69	70								
21.			12		64	32	59	60								
22.			12		13	21	34	36								
23.			7		84	22	41	50								
24.			15		63	33	69	71								
So 25.			15		47	35	64	66								
26.			33		73	45	74	76								
27.			38		92	43	85	88								
28.			110		101	61	82	86								
29.			128		173	62	81	84								
30.			28		106	48	98	98								
31.			15		15	23	45	63								

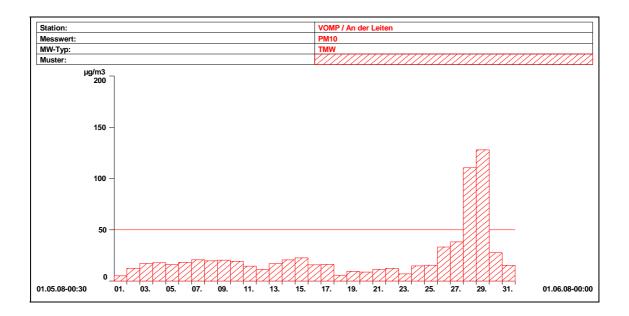
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage		31		31	31		
Verfügbarkeit		100%		98%	98%		
Max.HMW				275	117		
Max.01-M					117		
Max.3-MW					105		
Max.08-M							
Max.8-MW							
Max.TMW		128		50	62		
97,5% Perz.							
MMW		23		16	37		
Gl.JMW					43		

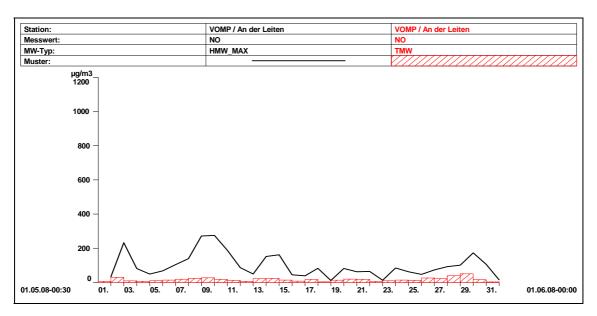
0

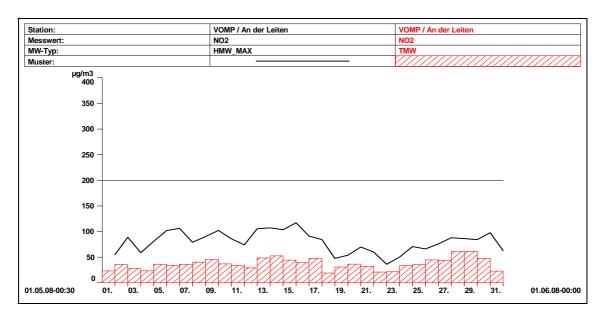
Zeitraum: MAI 2008

Messstelle: VOMP / An der Leiten

Anzahl der Tage mit Grenzwertüberschreitungen


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		2		0		
IG-L: Zielwerte menschliche Gesundheit		2		0		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				18		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete			•			

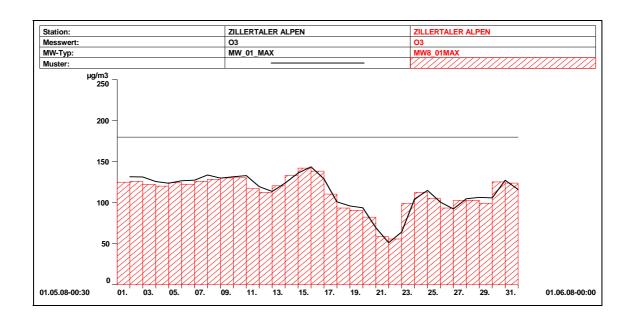

VDI-RL 2310: NO-Grenzwert


 $[\]ddot{U}1) \ \ddot{U}berschreitung \ des \ NO2-Grenzwertes \ gem\"{a}B \ \ddot{O}AW \ nur \ f\"{u}r \ den \ JMW \ (gleitend)$ $\ddot{U}2) \ \ddot{U}berschreitung \ des \ 97,5 \ Perzentils \ gem\"{a}B \ 2. \ VO \ gegen \ forstsch\"{a}dliche \ Luftverunreinigungen$

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: ZILLERTALER ALPEN


	SC)2	PM10	PM10	NO		NO2				03				co	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									125	125	132	132	133			
02.									126	126	131	131	131			
03.									122	122	126	126	127			
So 04.									120	120	124	124	124			
05.									124	124	127	127	127			
06.									122	123	127	127	128			
07.									126	126	134	135	136			
08.									128	128	130	130	130			
09.									130	130	132	132	132			
10.									130	130	133	133	134			
So 11.									117	117	120	120	120			
12.									113	113	114	114	114			
13.									121	121	124	124	125			
14.									133	133	136	137	137			
15.									142	142	144	144	144			
16.									138	139	129	130	131			
17.									110	111	101	103	102			
So 18.									94	94	96	96	97			
19.									91	91	94	94	95			
20.									82	82	70	74	74			
21.									59	59	51	53	53			
22.									56	56	64	64	66			
23.									99	100	104	104	111			
24.									113	113	115	115	115			
So 25.									105	106	101	101	101			
26.									93	94	92	93	93			
27.									103	103	105	105	105			
28.									103	103	106	106	106			
29.									99	100	106	106	106			
30.									125	125	127	128	129			
31.									124	125	116	120	119			

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						144	
Max.01-M						144	
Max.3-MW							
Max.08-M							
Max.8-MW						142	
Max.TMW						136	
97,5% Perz.							
MMW						104	
Gl.JMW							

Messstelle: ZILLERTALER ALPEN

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte						
IG-L: Grenzwerte menschliche Gesundheit						
IG-L: Zielwerte menschliche Gesundheit						
IG-L: Zielwerte Ökosysteme, Vegetation						
OZONGESETZ: Alarmschwelle					0	
OZONGESETZ: Informationsschwelle					0	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					15	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					29	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					23	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert						

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

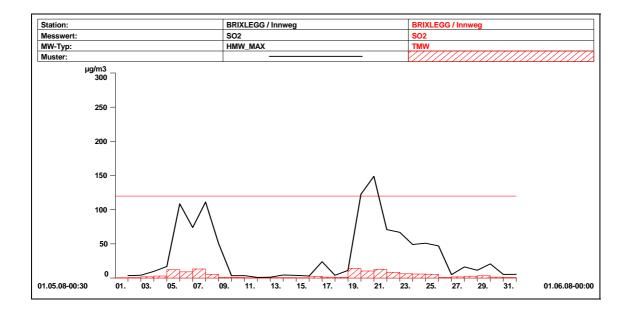
 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

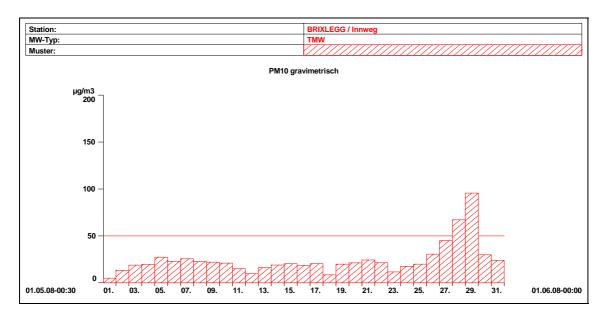
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: BRIXLEGG / Innweg

	SO)2	PM10	PM10	NO		NO2				03				co	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.	0	4		5												
02.	1	4		13												
03.	2	10		19												
So 04.	3	17		20												
05.	12	109		27												
06.	9	74		23												
07.	13	111		26												
08.	6	51		23												
09.	1	3		22												
10.	1	4		21												
So 11.	0	1		15												
12.	0	1		10												
13.	1	5		16												
14.	1	4		19												
15.	1	3		20												
16.	3	24		18												
17.	1	4		20												
So 18.	1	11		8												
19.	14	123		20												
20.	10	149		21												
21.	13	71		24												
22.	8	67		21												
23.	6	49		12												
24.	6	51		17												
So 25.	5	47		20												
26.	1	5		31												1
27.	2	16		45												
28.	3	11		67												
29.	3	21		96												1
30.	1	5		30												
31.	1	5		24												

	SO2	PM10 kont.	PM10 grav.	NO	NO2	О3	со
	$\mu g/m^3$	$\mu g/m^3$	μg/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage	31		31				
Verfügbarkeit	98%		100%				
Max.HMW	149						
Max.01-M							
Max.3-MW	65						
Max.08-M							
Max.8-MW							
Max.TMW	14		96				
97,5% Perz.	33						
MMW	4		24				
Gl.JMW							


Messstelle: BRIXLEGG / Innweg


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte	0					
IG-L: Grenzwerte menschliche Gesundheit	0	2				
IG-L: Zielwerte menschliche Gesundheit		2				
IG-L: Zielwerte Ökosysteme, Vegetation	0					
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen	0/1					
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme						
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)						
ÖAW: SO2-Kriterium für Siedlungsgebiete	0					
VDI-RL 2310: NO-Grenzwert						

 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: KRAMSACH / Angerberg

	SO)2	PM10 kont.	PM10	NO	_	NO2			_	03				со	
	μg	/m³	μg/m³	grav. μg/m³	$\mu g/m^3$		$\mu g/m^3$				μg/m³				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.					6	6	17	18	114	115	117	120	120			
02.					21	10	24	27	112	113	120	120	120			
03.					22	11	30	39	107	107	113	114	114			
So 04.					12	8	24	24	113	113	119	121	121			
05.					51	16	59	62	116	116	122	122	123			
06.					17	13	34	41	118	118	126	127	127			
07.					63	16	46	53	111	111	117	117	118			
08.					64	18	53	53	119	119	125	125	126			
09.					54	17	49	52	125	125	133	133	134			
10.					45	17	52	56	115	115	125	125	125			
So 11.					11	7	23	26	114	114	121	121	121			
12.					4	8	14	15	114	114	117	117	118			
13.					77	16	54	61	123	123	129	129	131			
14.					33	15	45	53	128	128	132	133	136			
15.					18	17	51	54	130	131	135	135	136			
16.					16	14	38	50	124	125	124	126	126			
17.					68	22	47	53	86	88	84	84	85			
So 18.					9	6	11	13	70	70	75	78	79			
19.					14	14	38	44	88	89	100	100	101			
20.					10	14	20	21	58	58	57	57	58			
21.					13	16	22	29	39	39	43	44	44			
22.					15	14	29	30	47	47	50	50	51			
23.					13	11	24	26	84	84	92	94	95			
24.					23	13	24	27	95	95	103	103	103			
So 25.					20	12	23	29	94	94	102	102	102			
26.					106	23	45	54	75	77	78	79	80			
27.					53	16	45	49	96	96	99	100	101			
28.					180	31	79	84	73	76	85	85	87			
29.					36	20	43	53	78	78	84	84	88			
30.					21	15	30	45	104	104	128	128	129			
31.					23	11	26	35	106	106	109	111	111			

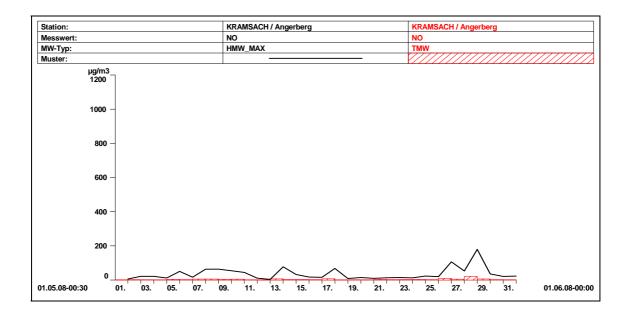
	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	со
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage				31	31	31	
Verfügbarkeit				98%	98%	98%	
Max.HMW				180	84	136	
Max.01-M					79	135	
Max.3-MW					68		
Max.08-M							
Max.8-MW						131	
Max.TMW				21	31	102	
97,5% Perz.							
MMW				4	14	74	
Gl.JMW					25		

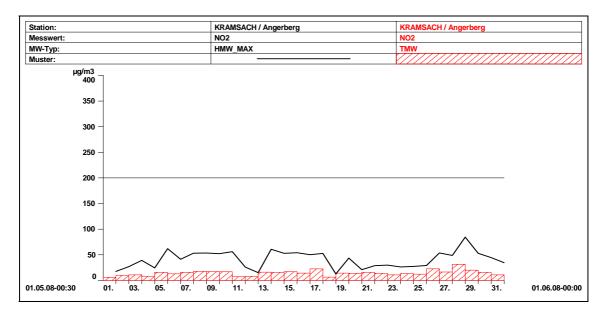
0

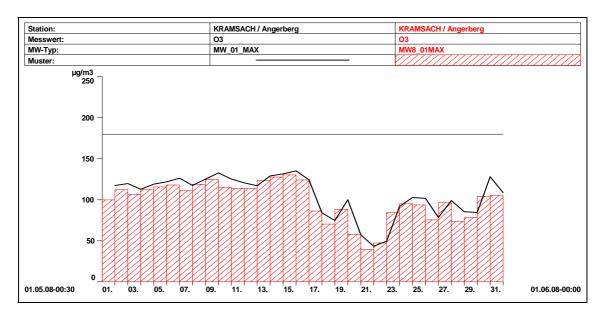
Zeitraum: MAI 2008

Messstelle: KRAMSACH / Angerberg

Anzahl der Tage mit Grenzwertüberschreitungen


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit				0		
IG-L: Zielwerte menschliche Gesundheit				0		
IG-L: Zielwerte Ökosysteme, Vegetation				0		
OZONGESETZ: Alarmschwelle					0	
OZONGESETZ: Informationsschwelle					0	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					5	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				1	28	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0	18	
ÖAW: SO2-Kriterium für Siedlungsgebiete						


VDI-RL 2310: NO-Grenzwert


 $[\]ddot{U}1) \ \ddot{U}berschreitung \ des \ NO2-Grenzwertes \ gem\"{a}B \ \ddot{O}AW \ nur \ f\"{u}r \ den \ JMW \ (gleitend)$ $\ddot{U}2) \ \ddot{U}berschreitung \ des \ 97,5 \ Perzentils \ gem\"{a}B \ 2. \ VO \ gegen \ forstsch\"{a}dliche \ Luftverunreinigungen$

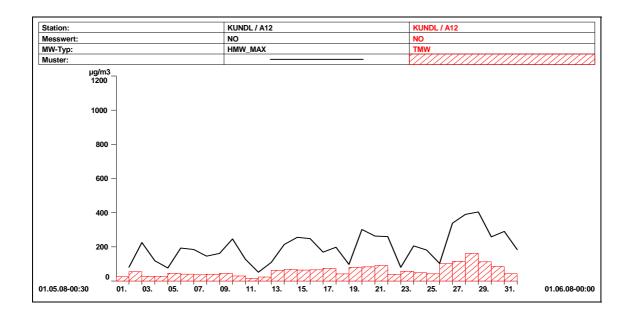
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

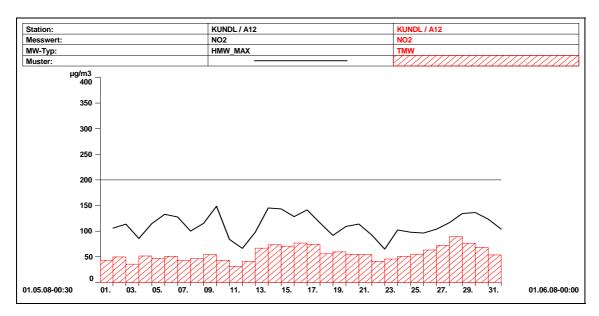
¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Zeitraum: MAI 2008 Messstelle: KUNDL / A12

	SC)2	PM10	PM10	NO		NO2		_	_	О3		_	_	СО	
			kont.	grav.				_								
	μg	/m³	$\mu g/m^3$	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$		1		mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.					81	43	85	106								
02.					225	50	105	114								
03.					119	36	85	86								
So 04.					77	52	109	115								
05.					193	47	121	133								
06.					185	51	122	128								
07.					146	42	95	100								
08.					162	46	104	115								
09.					247	54	133	149								
10.					128	43	76	84								
So 11.					52	32	59	66								
12.					109	41	95	98								
13.					214	67	127	145								
14.					256	73	130	143								
15.					248	71	124	128								
16.					169	77	132	141								
17.					198	75	108	116								
So 18.					98	56	88	92								
19.					302	60	103	109								
20.					264	54	104	114								
21.					260	54	90	92								
22.					80	41	62	65								
23.					206	46	93	102								
24.					181	51	86	98								
So 25.					103	55	88	96								
26.					339	63	89	104								
27.					390	73	107	117								
28.					404	89	130	134								
29.					259	76	120	136								
30.					291	68	119	123								
31.					184	54	99	104								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	О3	СО
	$\mu g/m^3$	$\mu g/m^3$	μg/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage				31	31		
Verfügbarkeit				98%	98%		
Max.HMW				404	149		
Max.01-M					133		
Max.3-MW					122		
Max.08-M							
Max.8-MW							
Max.TMW				161	89		
97,5% Perz.							
MMW				59	56		
Gl.JMW					61		


Zeitraum: MAI 2008 Messstelle: KUNDL / A12


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit				0		
IG-L: Zielwerte menschliche Gesundheit				1		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				30		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			

 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: WÖRGL / Stelzhamerstrasse

	SC)2	PM10 kont.	PM10 grav.	NO		NO2				03				со	
	μg	/m³	μg/m³	grav. μg/m³	$\mu g/m^3$		$\mu g/m^3$				μg/m³				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			8		3	15	32	39								
02.			13		45	20	40	43								
03.			16		33	16	34	39								
So 04.			18		9	17	33	38								
05.			17		39	21	54	58								
06.			22		39	23	54	55								
07.			18		53	19	50	52								
08.			17		55	22	50	54								
09.			20		83	27	63	66								
10.			22		29	19	46	53								
So 11.			16		7	14	31	40								
12.			12		9	14	47	47								
13.			16		29	23	48	50								
14.			19		26	24	55	56								
15.			25		42	30	66	70								
16.			17		34	25	70	87								
17.			24		25	31	52	53								
So 18.			5		2	11	32	42								
19.			8		10	19	53	58								
20.			9		10	20	33	35								
21.			14		13	21	34	37								
22.			15		4	16	31	32								
23.			6		41	17	45	47								
24.			13		23	16	31	34								
So 25.			16		7	16	31	37								
26.			39		135	38	54	62								
27.			40		66	30	65	65								
28.			82		206	51	71	78								
29.			115		107	34	59	63								
30.			36		97	31	70	74								
31.			15		10	16	29	31								

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage		31		31	31		
Verfügbarkeit		100%		98%	98%		
Max.HMW				206	87		
Max.01-M					71		
Max.3-MW					68		
Max.08-M							
Max.8-MW							
Max.TMW		115		33	51		
97,5% Perz.							
MMW		23		6	22		
Gl.JMW					32		

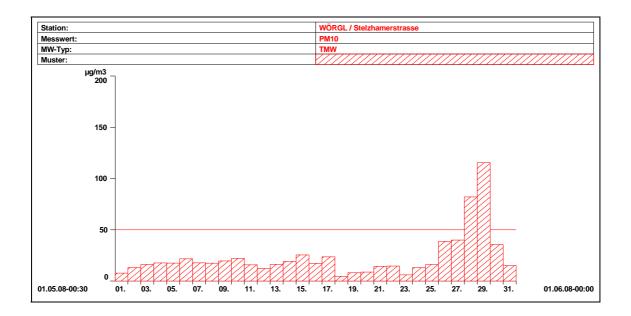
0

Zeitraum: MAI 2008

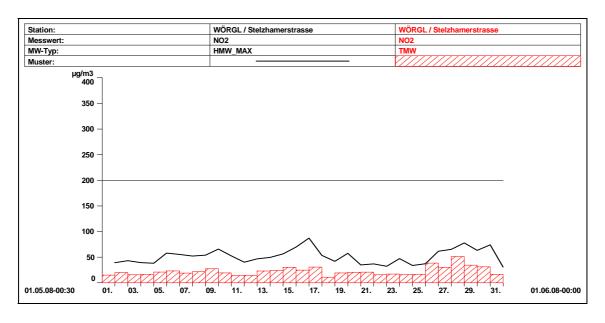
Messstelle: WÖRGL / Stelzhamerstrasse

Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		2		0		
IG-L: Zielwerte menschliche Gesundheit		2		0		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				2		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						


Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)


VDI-RL 2310: NO-Grenzwert

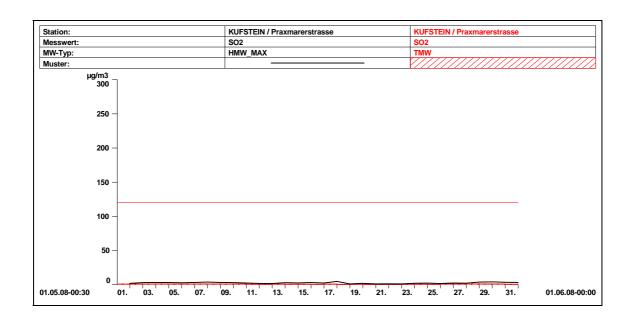

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

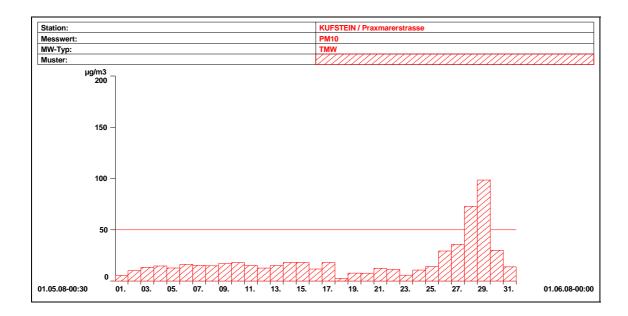
Messstelle: KUFSTEIN / Praxmarerstrasse

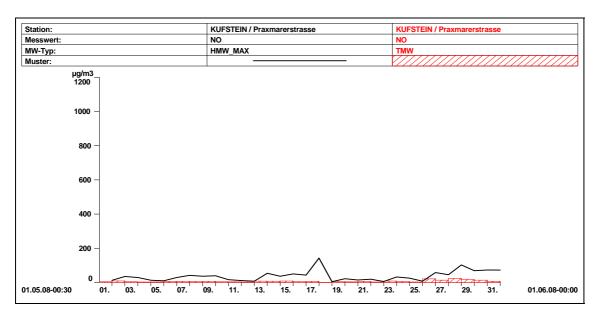
	SC)2	PM10	PM10	NO		NO2	_	03		_	СО				
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	μg/m³	μg/m³		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.	1	2	5		12	15	40	44								
02.	1	3	10		35	21	33	40								
03.	1	3	13		29	13	24	26								
So 04.	1	3	15		13	11	17	18								
05.	1	3	13		10	14	32	34								1
06.	1	3	16		29	19	35	38								1
07.	1	4	15		41	17	35	43								
08.	1	3	15		36	18	37	44								
09.	1	3	17		39	22	45	49								
10.	1	2	18		16	18	35	38								
So 11.	1	2	15		11	15	33	39								
12.	1	2	13		7	13	21	27								1
13.	1	3	15		54	24	53	59								1
14.	1	3	18		36	28	52	56								
15.	1	3	18		50	27	61	64								
16.	1	3	12		43	19	63	76								1
17.	1	5	18		143	22	49	60								
So 18.	1	1	3		4	8	15	18								
19.	1	2	8		22	18	51	56								1
20.	1	1	8		14	18	30	34								1
21.	1	1	12		19	22	30	34								
22.	1	1	11		5	15	21	22								1
23.	1	2	6		32	19	33	36								1
24.	1	2	11		25	15	23	24								
So 25.	1	2	14		7	13	19	23								
26.	1	3	29		58	37	51	56								
27.	1	2	36		45	30	67	80								
28.	2	4	73		102	36	68	69								
29.	2	4	99		69	31	53	53								
30.	1	4	30		73	35	68	74								
31.	1	3	14		72	20	43	49								

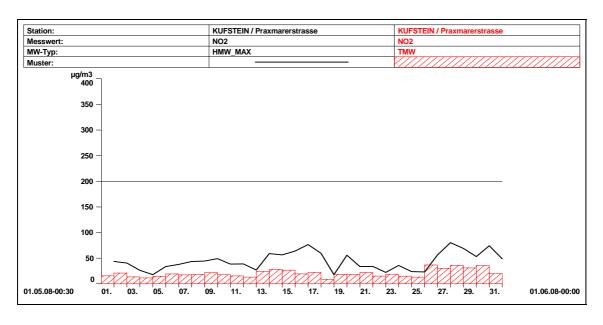

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage	31	31		31	31		
Verfügbarkeit	98%	100%		98%	98%		
Max.HMW	5			143	80		
Max.01-M					68		
Max.3-MW	4				64		
Max.08-M							
Max.8-MW							
Max.TMW	2	99		24	37		
97,5% Perz.	3						
MMW	1	19		7	20		
Gl.JMW					28		

Messstelle: KUFSTEIN / Praxmarerstrasse

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte	0			0		
IG-L: Grenzwerte menschliche Gesundheit	0	2		0		
IG-L: Zielwerte menschliche Gesundheit		2		0		
IG-L: Zielwerte Ökosysteme, Vegetation	0			n.a.		
OZONOFOTZ AL 1 II						
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen	0/0					
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				Ü1		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0		
ÖAW: SO2-Kriterium für Siedlungsgebiete	0					
VDI-RL 2310: NO-Grenzwert			0			


Ü1) Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)


¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

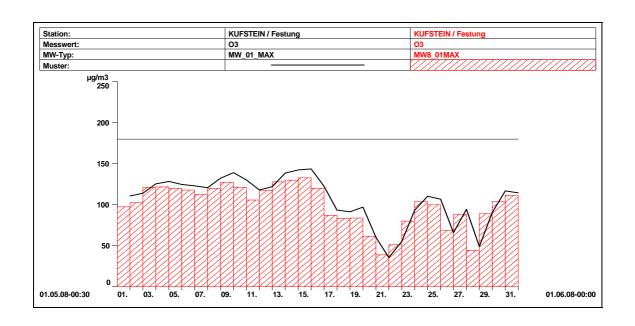


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: KUFSTEIN / Festung

	SC)2	PM10 kont.	PM10 grav.	NO	_	NO2				03				со	
	μg	/m³	μg/m³	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$	_			mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									111	112	111	111	112			
02.									103	103	114	114	115			
03.									121	122	125	126	126			
So 04.									122	122	128	128	128			
05.									120	120	125	126	126			
06.									118	118	123	123	125			
07.									112	112	121	121	121			
08.									120	120	132	132	133			
09.									127	128	139	139	140			
10.									121	122	130	130	130			
So 11.									106	106	118	119	120			
12.									117	117	122	122	123			
13.									128	128	139	139	139			
14.									130	130	142	142	143			
15.									133	133	144	144	145			
16.									120	120	122	124	125			
17.									87	87	93	94	95			
So 18.									83	83	91	91	92			
19.									84	84	97	97	97			
20.									62	62	60	61	62			
21.									39	40	36	37	37			
22.									51	51	55	55	56			
23.									80	81	93	93	95			
24.									104	104	110	110	111			
So 25.									100	100	107	107	107			
26.									68	71	66	66	67			
27.									88	89	94	94	96			
28.									44	48	49	49	51			
29.									89	89	91	92	95			
30.									104	104	117	122	127			
31.									111	111	114	114	114			


	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						31	
Verfügbarkeit						98%	
Max.HMW						145	
Max.01-M						144	
Max.3-MW							
Max.08-M							
Max.8-MW						133	
Max.TMW						93	
97,5% Perz.							
MMW						67	
Gl.JMW							

Messstelle: KUFSTEIN / Festung

SO2	PM10 1)	NO	NO2	03	CO
				0	
				0	
				7	
				 	O O O

Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)												
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					28							
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					19							
ÖAW: SO2-Kriterium für Siedlungsgebiete												
VDI-RL 2310: NO-Grenzwert												

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

 $[\]ddot{U}1) \ \ddot{U}berschreitung \ des \ NO2-Grenzwertes \ gem\"{a}B \ \ddot{O}AW \ nur \ f\"{u}r \ den \ JMW \ (gleitend)$ $\ddot{U}2) \ \ddot{U}berschreitung \ des \ 97,5 \ Perzentils \ gem\"{a}B \ 2. \ VO \ gegen \ forstsch\"{a}dliche \ Luftverunreinigungen$

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: LIENZ / Amlacherkreuzung

	SO)2	PM10	PM10	NO	_	NO2		03		СО					
			kont.	grav.					_					_		
	μg	/m³	μg/m³	μg/m³	μg/m³		μg/m³	I		I	μg/m³		ı		mg/m³	I
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.	1	2		12	41	24	41	47						0.5	0.6	0.8
02.	1	2		15	107	48	101	102						0.6	0.7	0.9
03.	1	2		16	52	32	55	61						0.5	0.6	0.6
So 04.	1	2		15	30	18	27	30						0.4	0.5	0.6
05.	1	2		16	112	39	78	84						0.4	0.5	0.6
06.	1	2		15	87	35	54	67						0.4	0.5	0.5
07.	1	2		18	115	38	67	69						0.4	0.5	0.5
08.	1	2		17	101	38	63	80						0.4	0.4	0.5
09.	1	3		20	125	42	72	90						0.4	0.6	0.6
10.	1	2		21	48	25	45	50						0.4	0.5	0.5
So 11.	1	1		12	30	18	32	40						0.4	0.4	0.5
12.	1	1		13	24	20	38	39						0.4	0.4	0.5
13.	1	2		17	81	39	73	77						0.4	0.5	0.6
14.	1	2		18	88	38	83	84						0.4	0.5	0.6
15.	1	2		19	105	39	76	86						0.4	0.5	0.7
16.	1	2		19	123	38	69	86						0.5	0.6	0.7
17.	1	2		13	82	28	55	60						0.5	0.6	0.7
So 18.	1	2		7	97	25	71	89						0.5	0.7	0.8
19.	1	4		16	158	37	75	78						0.5	0.6	0.7
20.	1	2		10	145	39	75	86						0.6	0.8	0.8
21.	1	2		13	146	37	77	80						0.5	0.6	0.7
22.	1	1		10	48	20	42	45						0.5	0.6	0.6
23.	1	3		13	211	32	65	77						0.6	0.8	0.9
24.	1	1		15	49	24	48	53						0.6	0.8	1.1
So 25.	1	2		16	50	23	55	63						0.5	0.6	0.7
26.	1	3		26	131	38	65	72						0.6	0.7	0.8
27.	1	3		35	105	29	55	65						0.4	0.5	0.6
28.	2	3		54	124	37	74	82						0.5	0.7	0.8
29.	2	2		61	132	40	73	73						0.4	0.6	0.6
30.	1	3		32	165	42	78	84						0.6	1.2	1.9
31.	1	2		19	66	27	55	67						0.5	0.7	0.8

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage	31		31	31	31		
Verfügbarkeit	98%		100%	98%	98%		99%
Max.HMW	4			211	102		
Max.01-M					101		1.2
Max.3-MW	3				94		
Max.08-M							
Max.8-MW							0.6
Max.TMW	2		61	60	48		
97,5% Perz.	2						
MMW	1	-	20	31	33	-	0.4
Gl.JMW					41		

Messstelle: LIENZ / Amlacherkreuzung

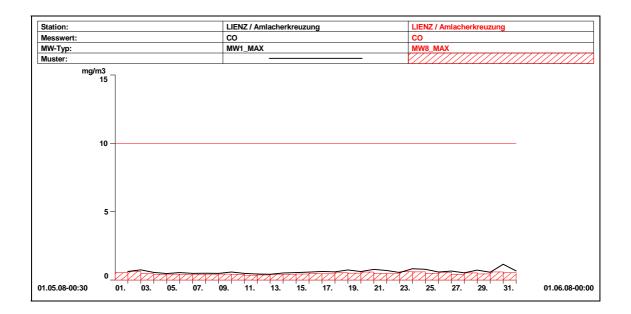
Anzahl der Tage mit Grenzwertüberschreitungen

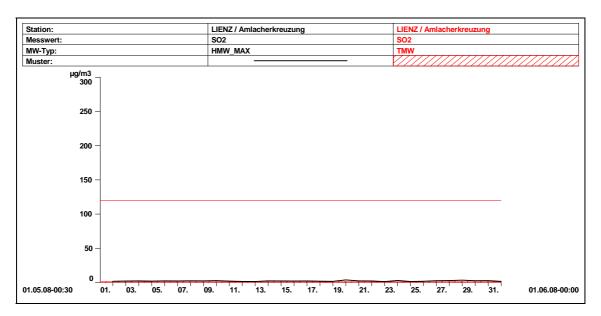
Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte	0			0		
IG-L: Grenzwerte menschliche Gesundheit	0	2		0		0
IG-L: Zielwerte menschliche Gesundheit		2		0		
IG-L: Zielwerte Ökosysteme, Vegetation	0			n.a.		
OZONGESETZ: Alarmschwelle						
OZONGESETZ: Informationsschwelle						
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen	0/0					
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				10		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		

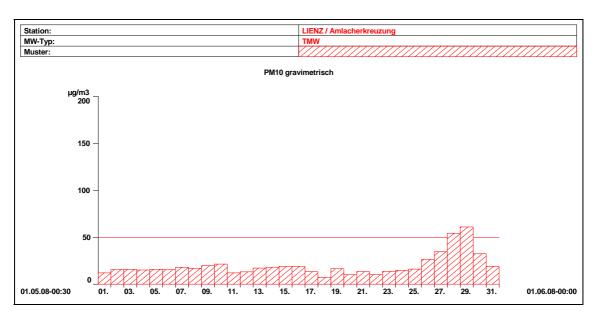
 $[\]ddot{\mathrm{U}}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

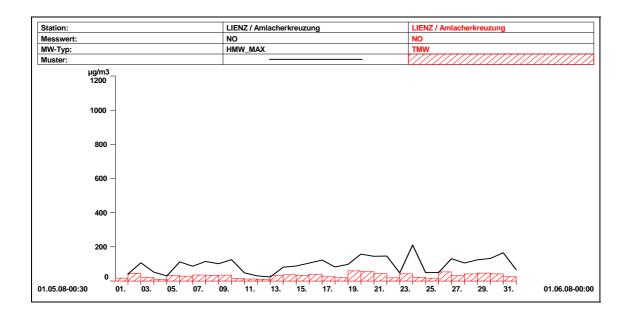
ÖAW: SO2-Kriterium für Siedlungsgebiete

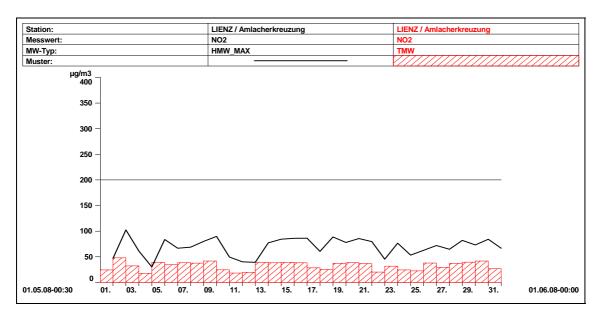
VDI-RL 2310: NO-Grenzwert


0


0

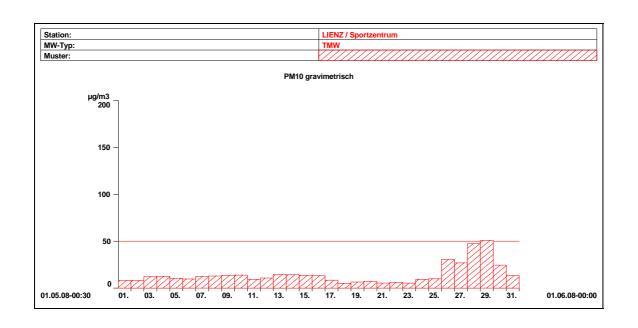

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen


n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.


¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.

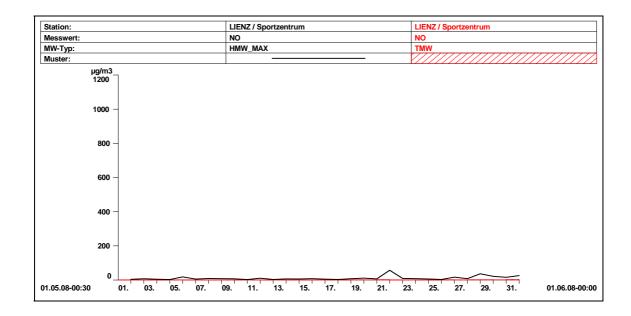
Messstelle: LIENZ / Sportzentrum

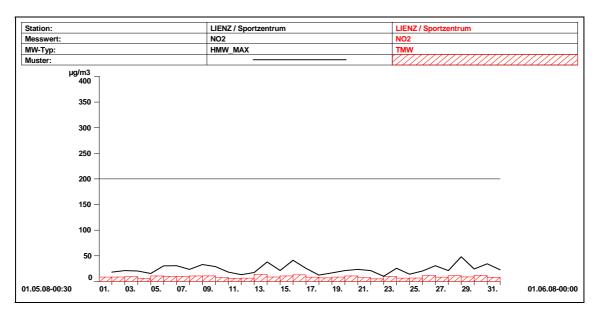
	SO2		PM10	PM10	NO		NO2			03				СО		
	μg	/m³	kont. μg/m³	grav. μg/m³	μg/m³	_	μg/m³				μg/m³				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				8	4	8	15	18	100	100	106	107	107			
02.				8	8	9	19	21	123	123	131	131	133			
03.				12	5	9	15	20	130	130	136	136	137			
So 04.				13	3	6	14	16	117	117	123	123	124			
05.				10	19	11	28	30	126	126	134	134	135			
06.				10	6	10	26	31	127	127	131	131	131			
07.				12	9	10	21	23	120	120	124	124	124			
08.				13	8	11	24	33	117	117	119	121	123			
09.				13	7	11	25	29	120	120	128	128	128			
10.				14	3	8	17	18	116	116	117	118	118			
So 11.				9	11	6	12	13	105	105	112	113	113			
12.				11	4	7	14	17	112	112	117	117	118			
13.				14	7	13	35	38	119	119	122	122	123			
14.				14	6	9	20	21	125	125	129	129	130			
15.				14	8	11	30	41	119	119	131	131	131			
16.				13	5	13	25	26	107	107	117	117	118			
17.				8	4	8	12	12	71	71	74	74	76			
So 18.				5	7	7	14	17	71	71	81	81	83			
19.				6	12	8	18	21	68	68	76	76	76			
20.				7	7	11	20	24	57	57	60	61	62			
21.				5	58	7	18	21	99	99	104	104	105			
22.				6	10	5	8	10	81	83	82	83	83			
23.				5	8	10	17	26	79	80	92	92	94			
24.				9	6	6	13	14	93	94	102	102	102			
So 25.				10	3	7	15	20	90	90	96	96	97			
26.				31	17	12	23	31	73	73	76	76	76			
27.				27	8	8	19	21	101	101	110	110	110			
28.				47	37	11	35	48	96	96	100	101	102			
29.				51	22	9	17	24	88	88	95	98	99			
30.				25	16	12	23	34	85	85	102	102	103			
31.				13	26	8	19	23	79	79	84	85	91			

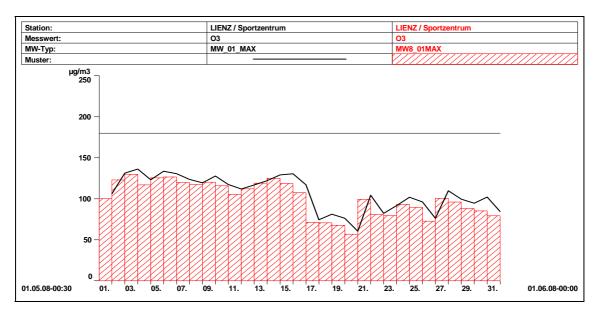

	SO2	PM10 kont.	PM10 grav.	NO	NO2	03	СО
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage			31	31	31	31	
Verfügbarkeit			100%	98%	98%	98%	
Max.HMW				58	48	137	
Max.01-M					35	136	
Max.3-MW					30		
Max.08-M							
Max.8-MW						130	
Max.TMW			51	4	13	93	
97,5% Perz.							
MMW			14	2	9	70	
Gl.JMW					17		

Messstelle: LIENZ / Sportzentrum

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
Gesetzliche Alarm-, Grenz- und Zielwerte						
IG-L: Warnwerte				0		
IG-L: Grenzwerte menschliche Gesundheit		1		0		
IG-L: Zielwerte menschliche Gesundheit		1		0		
IG-L: Zielwerte Ökosysteme, Vegetation				n.a.		
OZONGESETZ: Alarmschwelle					0	
OZONGESETZ: Informationsschwelle					0	
OZONGESETZ: langfristiger Zielwert menschliche Gesundheit					5	
2. VO gegen forstschädliche Luftverunreinigungen						


Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)						
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				Ü1	30	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0	16	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Lienz/Amlacherkreuzung und Lienz/Sportzentrum wird PM10 bzw. PM2.5 gravimetrisch gemessen.



 $[\]ddot{U}1) \ \ddot{U}berschreitung \ des \ NO2-Grenzwertes \ gem\"{a}B \ \ddot{O}AW \ nur \ f\"{u}r \ den \ JMW \ (gleitend)$ $\ddot{U}2) \ \ddot{U}berschreitung \ des \ 97,5 \ Perzentils \ gem\"{a}B \ 2. \ VO \ gegen \ forstsch\"{a}dliche \ Luftverunreinigungen$

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Beurteilungsunterlagen:

A. Inländische Grenzwerte

I. Zweite Verordnung gegen forstschädliche Luftverunreinigungen: (BGBl. Nr. 199/1984 i.d.g.F.)

Grenzwerte für Schwefeldioxid (SO₂):

§ 4 (1) Als Höchstanteile im Sinne des § 48 lit.b des Forstgesetzes 1975, die nach dem Stand der wissenschaftlichen Erkenntnisse und der Erfahrung noch nicht zu einer der Schadenanfälligkeit des Bewuchses entsprechenden Gefährdung der Waldkultur führen (wirkungsbezogene Immissionsgrenzwerte, gemessen an der Empfindlichkeit der Fichte), werden bei Messungen in der Luft festgesetzt:

Schwefeldioxid (SO ₂)						
	April - Oktober	November - März				
97,5 Perzentil für den Halbstundenmittelwert	0,07 mg/m³	0,15 mg/m³				
(HMW) in den Monaten						
Die zulässige Überschreitung des Grenzwertes	s, die sich aus der Perzentilregelung ergibt, da	urf höchstens 100% des Grenzwertes betragen.				
Tagesmittelwert (TMW)	0,05 mg/m ³	0,10 mg/m³				
Halbstundenmittelwert (HMW)	0,14 mg/m³	0,30 mg/m³				

II. Warnwerte für Ozon laut Ozongesetz 1992: (BGBl. I Nr. 210/1992 i.d.g.F.)

Informationsschwelle	180 μg/m³ als Einstundenmittelwert (stündlich gleitend)			
Alarmschwelle	240 μg/m³ als Einstundenmittelwert (stündlich gleitend)			
Zielwert	120 µg/m³ als Achtstundenmittelwert *)			
*) Dieser Wert darf im Mittel über drei Jahre an nicht mehr als 25 Tagen pro Kalenderjahr überschritten werden und gilt ab 2010.				

III. Empfehlungen der Österreichischen Akademie der Wissenschaften, Kommission für die Reinhaltung der Luft:

Nov. 1998: Luftqualitätskriterien Stickstoffdioxid (NO ₂)			August 1989: Luftqualitätskriterien Ozon (O ₃)					
Wirkungsbezogene Immissionsgrenzkonzentrationen für NO ₂ in mg/m³			Wirkungsbezogene Immissionsgrenzkonzentrationen für $\mathrm{O_3}$ in $\mathrm{mg/m^3}$					
	HMW	TMW	JMW		HMW	1MW	8MW	Vegetations- periode *)
zum Schutz des Menschen	0,200	0,080	0,030	zum Schutz des Menschen	0,120	-	0,100	-
zum Schutz der Vegetation	0,200	0,080	0,030	zum Schutz der Vegetation (einschließlich empfindlicher Pflanzenarten)	0,300	0,150	0,060	0,060
Zielvorstellungen zum Schutz der Ökosysteme	0,080	0,040	0,010					
*) als Mittelwert der Siebenstundenmittelwerte in der Zeit von 09.00 – 16.00 Uhr MEZ während der Vegetationsperiode								

Die höchstzulässige Konzentration von Schwefeldioxid (SO ₂) in der freien Luft beträgt						
	in Erholun	gsgebieten	in allgemeinen Siedlungsgebieten			
		Schwefeldioxid	in mg/m³ Luft			
	April - Oktober	November – März				
Tagesmittelwert	0,05	0,10	0,20			
Halbstundenmittelwert	0,07	0,15	0,20			
			Die Überschreitung dieses Halbstundenmittelwertes			
			dreimal pro Tag bis höchstens 0,50 mg/m³ gilt			
			nicht als Luftbeeinträchtigung.			

V. Immissionsschutzgesetz-Luft (BGBl. I Nr. 115/1997 i.d.g.F.)

a) Schutz der menschlichen Gesundheit

G	renzwerte in μg/m³ (aus	genommen CO: ange	egeben in mg/m³)		
Luftschadstoff	HMW	MW3	MW8	TMW	JMW
Schwefeldioxid	200 *)			120	
Kohlenmonoxid			10		
Stickstoffdioxid	200				30 **)
PM_{10}				50 ***)	40
	War	nwerte in μg/m³			
Schwefeldioxid		500			
Stickstoffdioxid		400			
	Ziel	lwerte in μg/m³			
Stickstoffdioxid				80	
PM_{10}				50	20

 ^{*)} Drei Halbstundenmittelwerte pro Tag, jedoch maximal 48 Halbstundenmittelwerte pro Kalenderjahr bis zu einer Konzentration von 350 μg/m³ gelten nicht als Überschreitung.
 **) Der Immissionsgrenzwert von 30 μg/m³ ist ab 1. Jänner 2012 einzuhalten. Die Toleranzmarge beträgt 30 μg/m³

b) Schutz der Ökosysteme und der Vegetation (BGBl. II Nr. 298/2001 i.d.g.F.)

Grenzwerte in μg/m³						
Luftschadstoff	HMW	MW3	MW8	TMW	JMW	
Schwefeldioxid					201)	
Stickstoffoxide					30	
	Ziel	werte in μg/m³				
Schwefeldioxid				50		
Stickstoffdioxid				80		
¹) für das Kalenderjahr und Winterhalbjahr (1.Oktober bis 31.März)						

B. Ausländische Grenzwerte, wo keine österreichischen vorhanden sind

I. VDI-Richtlinie 2310:

Grenzwerte für Stickstoffmonoxid (NO)				
Tagesmittelwert	500 μg/m³			
Halbstundenmittelwert	1000 μg/m³			

^{***)} Der Immissionsgrenzwert von 30 μg/m³ ist ab 1. Janner 2012 einzuhalten. Die Toleranzmarge beträgt 30 μg/m³ bei In-Kraft-Treten dieses Bundesgesetzes und wird am 1. Jänner jedes Jahres bis 1. Jänner 2005 um 5 μg/m³ verringert. Die Toleranzmarge von 10 μg/m³ gilt gleich bleibend von 1. Jänner 2005 bis 31. Dezember 2009. Die Toleranzmarge von 5 μg/m³ gilt gleich bleibend von 1. Jänner 2010 bis 31. Dezember 2011.

^{***)} Pro Kalenderjahr ist die folgende Zahl von Überschreitungen zulässig: ab In-Kraft-Treten des Gesetzes bis 2004: 35; von 2005 bis 2009: 30; ab 2010: 25.

IG-L Überschreitungen:

PM10 Staub

PM10 kontinuierlich

IG-L Grenzwertüberschreitungen im Zeitraum 01.05.08-00:30 - 01.06.08-00:00 Tagesmittelwerte > $50\mu g/m3$

MESSSTELLE	Datum WERT[µ9	g/m3]	
HEITERWANG Ort / B179 HEITERWANG Ort / B179 Anzahl: 2	28.05.2008 29.05.2008		
MUTTERS / Gärberbach - A13 MUTTERS / Gärberbach - A13 Anzahl: 2	28.05.2008 29.05.2008		
VOMP / An der Leiten VOMP / An der Leiten Anzahl: 2	28.05.2008 29.05.2008		
WÖRGL / Stelzhamerstrasse WÖRGL / Stelzhamerstrasse Anzahl: 2	28.05.2008 29.05.2008	-	
KUFSTEIN / Praxmarerstrasse KUFSTEIN / Praxmarerstrasse Anzahl: 2	28.05.2008 29.05.2008	73 99	

PM10 gravimetrisch

IG-L Grenzwertüberschreitungen im Zeitraum 01.05.08-00:30 - 01.06.08-00:00 Tagesmittelwerte > $50\mu g/m3$

MESSSTELLE	Datum	WERT[µg/m3]
IMST / Imsterau IMST / Imsterau Anzahl: 2		.2008 9	- -
IMST / A12 IMST / A12 Anzahl: 2		.2008	95 77
INNSBRUCK / Andechsstrasse INNSBRUCK / Andechsstrasse Anzahl: 2			91 70
<pre>INNSBRUCK / Fallmerayerstr. INNSBRUCK / Fallmerayerstr. Anzahl: 2</pre>		.2008 9	91 69
HALL IN TIROL / Sportplatz HALL IN TIROL / Sportplatz Anzahl: 2			00 88
VOMP / Raststätte A12 VOMP / Raststätte A12 Anzahl: 2			88 92

BRIXLEGG / Innweg BRIXLEGG / Innweg Anzahl: 2	28.05.2008 29.05.2008	67 96
LIENZ / Sportzentrum Anzahl: 1	29.05.2008	51
LIENZ / Amlacherkreuzung LIENZ / Amlacherkreuzung Anzahl: 2	28.05.2008 29.05.2008	54 61

STICKSTOFFDIOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.05.08-00:30 - 01.06.08-00:00
Halbstundenmittelwert > 200µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Warnwertüberschreitungen im Zeitraum 01.05.08-00:30 - 01.06.08-00:00 Dreistundenmittelwert > 400µg/m3

 $\label{eq:messstelle} MESSSTELLE \qquad \qquad Datum \qquad WERT[\mu g/m3]$

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Zielwertüberschreitungen im Zeitraum 01.05.08-00:30 - 01.06.08-00:00
Tagesmittelwert > 80µg/m3

MESSSTELLE	Datum WERT[µg/m	13]
VOMP / Raststätte A12 VOMP / Raststätte A12 VOMP / Raststätte A12 Anzahl: 3	14.05.2008 28.05.2008 29.05.2008	82 85 89
KUNDL / A12 Anzahl: 1	28.05.2008	89

SCHWEFELDIOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.05.08-00:30 - 01.06.08-00:00
Halbstundenmittelwert > 200ug/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Warnwertüberschreitungen im Zeitraum 01.05.08-00:30 - 01.06.08-00:00 Dreistundenmittelwert > $500 \mu g/m3$

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

ÖKOSYSTEME / VEGETATION Zielwertüberschreitungen im Zeitraum 01.05.08-00:30 - 01.06.08-00:00

Tagesmittelwert > 50µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Grenzwertüberschreitungen im Zeitraum 01.05.08-00:30 - 01.06.08-00:00 Tagesmittelwert > 120µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

KOHLENMONOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.05.08-00:30 - 01.06.08-00:00
Achtstundenmittelwert > 10mg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

OZON

Überschreitungen der Alarmschwelle lt. Ozongesetz im Zeitraum 01.05.08-00:30 - 01.06.08-00:00

Einstundenmittelwert > 240µg/m3

 $\label{eq:messstelle} MESSSTELLE \qquad \qquad Datum \qquad WERT[\mu g/m3]$

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

Überschreitungen der Informationsschwelle lt. Ozongesetz im Zeitraum 01.05.08-00:30 - 01.06.08-00:00

Einstundenmittelwert > 180µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

Zielwertüberschreitungen lt. Ozongesetz im Zeitraum 01.05.08-00:30 - 01.06.08-00:00

Achtstundenmittelwert > 120µg/m3

MESSSTELLE	Datum	WERT[µg/m3]
HÖFEN / Lärchbichl	02.05.2008-	24:00 122
HÖFEN / Lärchbichl	04.05.2008-	24:00 122
HÖFEN / Lärchbichl	05.05.2008-	24:00 127
HÖFEN / Lärchbichl	06.05.2008-	24:00 127
HÖFEN / Lärchbichl	07.05.2008-	24:00 121
HÖFEN / Lärchbichl	08.05.2008-	24:00 131
HÖFEN / Lärchbichl	09.05.2008-	24:00 136
HÖFEN / Lärchbichl	10.05.2008-	24:00 130
HÖFEN / Lärchbichl	13.05.2008-	24:00 125
HÖFEN / Lärchbichl	14.05.2008-	24:00 130
HÖFEN / Lärchbichl	15.05.2008-	24:00 143
Anzahl: 11		
KARWENDEL West	01.05.2008-	24:00 130
KARWENDEL West	02.05.2008-	
KARWENDEL West	03.05.2008-	
KARWENDEL West	04.05.2008-	
KARWENDEL West		24:00 135
KARWENDEL West	06.05.2008-	
KARWENDEL West	07.05.2008-	24:00 133
KARWENDEL West	08.05.2008-	24:00 140
KARWENDEL West	09.05.2008-	24:00 146
KARWENDEL West	10.05.2008-	24:00 144

KARWENDEL West	11.05.2008-24:00	128
KARWENDEL West	12.05.2008-24:00	124
KARWENDEL West	13.05.2008-24:00	135
KARWENDEL West	14.05.2008-24:00	140
KARWENDEL West	15.05.2008-24:00	141
KARWENDEL West	16.05.2008-24:00	137
Anzahl: 16		
NORDKETTE	01.05.2008-24:00	129
	02.05.2008-24:00	130
NORDKETTE		
NORDKETTE	03.05.2008-24:00	129
NORDKETTE	04.05.2008-24:00	125
NORDKETTE	05.05.2008-24:00	127
NORDKETTE	06.05.2008-24:00	132
NORDKETTE	07.05.2008-24:00	132
NORDKETTE	08.05.2008-24:00	137
NORDKETTE	09.05.2008-24:00	135
NORDKETTE	10.05.2008-24:00	140
NORDKETTE	11.05.2008-24:00	122
NORDKETTE	13.05.2008-24:00	129
NORDKETTE	14.05.2008-24:00	138
NORDKETTE	15.05.2008-24:00	137
NORDKETTE	16.05.2008-24:00	138
Anzahl: 15		
ZILLERTALER ALPEN	01.05.2008-24:00	125
ZILLERTALER ALPEN	02.05.2008-24:00	126
ZILLERTALER ALPEN	03.05.2008-24:00	122
ZILLERTALER ALPEN	05.05.2008-24:00	124
ZILLERTALER ALPEN	06.05.2008-24:00	122
ZILLERTALER ALPEN	07.05.2008-24:00	126
ZILLERTALER ALPEN	08.05.2008-24:00	128
ZILLERTALER ALPEN	09.05.2008-24:00	130
ZILLERTALER ALPEN	10.05.2008-24:00	130
ZILLERTALER ALPEN	13.05.2008-24:00	121
ZILLERTALER ALPEN	14.05.2008-24:00	133
ZILLERTALER ALPEN	15.05.2008-24:00	142
ZILLERTALER ALPEN	16.05.2008-24:00	138
ZILLERTALER ALPEN	30.05.2008-24:00	125
ZILLERTALER ALPEN	31.05.2008-24:00	124
Anzahl: 15	31.03.2000 21.00	121
KRAMSACH / Angerberg	09.05.2008-24:00	125
KRAMSACH / Angerberg	13.05.2008-24:00	123
KRAMSACH / Angerberg	14.05.2008-24:00	128
KRAMSACH / Angerberg	15.05.2008-24:00	130
KRAMSACH / Angerberg	16.05.2008-24:00	124
Anzahl: 5		
KUFSTEIN / Festung	03.05.2008-24:00	121
KUFSTEIN / Festung	04.05.2008-24:00	122
KUFSTEIN / Festung	09.05.2008-24:00	127
KUFSTEIN / Festung	10.05.2008-24:00	121
KUFSTEIN / Festung	13.05.2008-24:00	128
KUFSTEIN / Festung	14.05.2008-24:00	130
KUFSTEIN / Festung	15.05.2008-24:00	133
Anzahl: 7		
T T T T T T T T T T T T T T T T T T T	00 05 0000 01 00	100
LIENZ / Sportzentrum	02.05.2008-24:00	123
LIENZ / Sportzentrum	03.05.2008-24:00	130
LIENZ / Sportzentrum	05.05.2008-24:00	126
LIENZ / Sportzentrum	06.05.2008-24:00	127
LIENZ / Sportzentrum	14.05.2008-24:00	125
Anzahl: 5		